

www.MathWorksheetsGo.com

I. Model Problems. II. Practice III. Challenge Problems IV. Answer Key

Web Resources

- Unit Circle Game
- Graph and Formula of the Unit Circle
- Unit Circle Printables (fill in the blank unit circle)
 - Graph of Sine to Unit Circle
 - <u>Finding the Reference Angle</u>
 - <u>Converting Radians to Degrees</u>
 - Period of Sine and Cosine curves

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at <u>http://www.mathworksheetsgo.com/downloads/terms-of-use.php</u>.

Online Graphing Calculator(free): www.meta-calculator.com/online/

Intro to Sine and Cosine

I. Model Problems

 $y = A \sin \theta$ and $y = A \cos \theta$

If *A* is negative the graph is reflected.

|A| is the amplitude of the function.

Amplitude is the height of the oscillation of the sine (cosine) function. It is half the distance between the maximum and minimum *y*-values.

Trig functions are periodic meaning there is a pattern of *y*-values that repeat at regular intervals (cycles). The **period** of the function is the horizontal distance of one cycle.

In this example we will find the amplitude and period of a graphed function.

Example 1: Find the amplitude and period of the given graph.

Find the amplitude and period. For the period look for the beginning and ending of a cycle.

The amplitude is 0.5. The period is π .

Answer: The amplitude is 0.5. The period is π .

In these examples we will graph a sine and cosine function using a table of values. *Example 2*: Graph $y = \sin x$.

Use the unit circle and $\sin \theta = \frac{y}{r}$ to create a table of values. Choose θ such that y is a rational value.

Answer:

Graph coordinates. Label *x*-axis in terms of π .

Example 2: Graph $y = -2 \cos x$.

Use the unit circle and $\cos \theta = \frac{x}{r}$ to create a table of values. Choose θ such that x is a rational value.

Graph coordinates. Label *x*-axis in terms of π .

II. Practice Problems

Find the amplitude of the given functions.

$1. y = 3\sin x$	$2. y = -\frac{2}{5}\cos x$	3. $y = \cos x$	4. $y = -\frac{1}{2}\sin x$
-------------------	------------------------------	-----------------	-----------------------------

Find the amplitude and period of the given graph.

Graph the following functions. Identify the amplitude and period. 11. $y = \sin x$ 12. $y = \cos x$ 13. $y = 2 \sin x$

14. $y = -2 \sin x$ 15. $y = -\frac{1}{2} \sin x$ 16. $y = 4 \cos x$ 17. $y = -4 \cos x$ 18. $y = \frac{1}{4} \cos x$ 19. $y = -\frac{1}{4} \cos x$

21.

Write the equations of the following graphs. 20.

III. Challenge Problems

- 24. Problems 11 and 12 are the parent graphs of sine and cosine. How do they compare?
- 25. Graph $y = \sin^2 x + \cos^2 x$.

IV. Answers

- 1. 3
- 2. $\frac{2}{5}$
- 3. 1
- 4. $\frac{1}{2}$
- 5. Amp = 2 Per = 2π
- 6. Amp = 1 Per = 4π
- 7. Amp = 3 Per = π
- 8. Amp = 1 Per = 6π
- 9. Amp $=\frac{1}{2}$ Per $=\frac{\pi}{2}$
- 10. Amp $=\frac{1}{4}$ Per $= 2\pi$
- 11. Amp = 1 Per = 2π

12. Amp = 1 Per = 2π

13. Amp = 2 Per = 2π

14. Amp = 2 Per = 2π

	2		
	- 1.5		
	0.5		
-п	-0.5	π	2π
	-1		

18. Amp $=\frac{1}{4}$ Per $= 2\pi$

 $20. y = 3\sin x$

- $21. \ y = -\frac{1}{2}\cos x$
- $22. \ y = -\frac{1}{4}\sin x$
- 23. $y = \cos x$
- 24. There is a shift of $\frac{\pi}{2}$ in the horizontal direction.