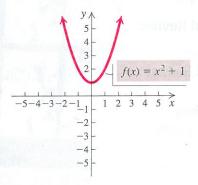
The Complex Numbers

Perform computations involving complex numbers.

Some functions have zeros that are not real numbers. In order to find the zeros of such functions, we must consider the complex-number system.

The Complex-Number System

We know that the square root of a negative number is not a real number. For example, $\sqrt{-1}$ is not a real number because there is no real number x such that $x^2 = -1$. This means that certain equations, like $x^2 = -1$ or $x^2 + 1 = 0$, do not have real-number solutions, and certain functions, like $f(x) = x^2 + 1$, do not have real-number zeros. Consider the graph of $f(x) = x^2 + 1$.



We see that the graph does not cross the x-axis and thus has no x-intercepts. This illustrates that the function $f(x) = x^2 + 1$ has no real-number zeros. Thus there are no real-number solutions of the corresponding equation $x^2 + 1 = 0$.

We can define a nonreal number that is a solution of the equation $x^2 + 1 = 0$.

THE NUMBER i

The number i is defined such that

$$i = \sqrt{-1}$$
 and $i^2 = -1$.

To express roots of negative numbers in terms of i, we can use the fact that

$$\sqrt{-p} = \sqrt{-1 \cdot p} = \sqrt{-1} \cdot \sqrt{p} = i\sqrt{p}$$

when p is a positive real number.

EXAMPLE 1 Express each number in terms of *i*.

a)
$$\sqrt{-7}$$

b)
$$\sqrt{-16}$$
 c) $-\sqrt{-13}$ **e)** $\sqrt{-48}$

d)
$$-\sqrt{-64}$$

e)
$$\sqrt{-48}$$

Solution

a)
$$\sqrt{-7} = \sqrt{-1 \cdot 7} = \sqrt{-1} \cdot \sqrt{7}$$
 $= i\sqrt{7}$, or $\sqrt{7}i$

b) $\sqrt{-16} = \sqrt{-1 \cdot 16} = \sqrt{-1} \cdot \sqrt{16}$
 $= i \cdot 4 = 4i$
c) $-\sqrt{-13} = -\sqrt{-1 \cdot 13} = -\sqrt{-1} \cdot \sqrt{13}$
 $= -i\sqrt{13}$, or $-\sqrt{13}i$

d) $-\sqrt{-64} = -\sqrt{-1 \cdot 64} = -\sqrt{-1} \cdot \sqrt{64}$
 $= -i \cdot 8 = -8i$
e) $\sqrt{-48} = \sqrt{-1 \cdot 48} = \sqrt{-1} \cdot \sqrt{48}$
 $= i\sqrt{16 \cdot 3}$
 $= i \cdot 4\sqrt{3}$
 $= 4i\sqrt{3}$, or $4\sqrt{3}i$

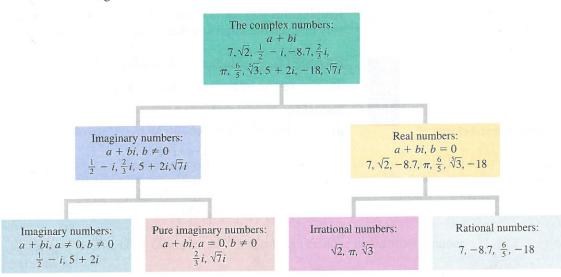
Now Try Exercises 1, 7, and 9.

The complex numbers are formed by adding real numbers and multiples of i.

COMPLEX NUMBERS

A **complex number** is a number of the form a + bi, where a and b are real numbers. The number a is said to be the **real part** of a + bi, and the number b is said to be the **imaginary part** of a + bi.*

Note that either a or b or both can be 0. When b=0, a+bi=a+0i=a, so every real number is a complex number. A complex number like 3+4i or 17i, in which $b \neq 0$, is called an **imaginary number**. A complex number like 17i or -4i, in which a=0 and $b \neq 0$, is sometimes called a **pure imaginary number**. The relationships among various types of complex numbers are shown in the figure below.



^{*}Sometimes bi is considered to be the imaginary part.