Lymphatic System

- Organs, vessels and a fluid called lymph
 - similar to interstitial fluid
- Organs and structures involved
 - red bone marrow
 - thymus
 - spleen
 - lymph nodes
 - diffuse lymphatic tissue
 - tonsils, adenoids & peyers patches
Functions of the Lymphatic System

• Draining excess interstitial fluid from tissue spaces
• Transporting dietary lipids & vitamins from GI tract to the blood
• Facilitating immune responses
Lymphatic Vessels & Circulation

- Capillaries that begin as closed-ended tubes found in spaces between cells
- Combine to form lymphatic vessels
 - resemble veins with thin walls & more valves
- Fluid flows through lymph nodes towards large veins (subclavian veins) above the heart
 - lymph emptied into bloodstream
Lymphatic Capillaries

- Found throughout the body except in Avascular tissue (cartilage, epidermis & cornea)
- Structure is designed to let tissue fluid in but not out
Formation & Flow of Lymph

- Fluid & proteins escaping from vascular capillaries is collected by lymphatic capillaries & returned to the blood
- Lymphatic vessels empty into subclavian veins
Lymphatic Organs & Tissues

• Widely distributed throughout the body
• Primary lymphatic organs
 – provide environment for stem cells to divide & mature into B and T lymphocytes
 • red bone marrow gives rise to mature B cells
 • thymus is site where T cells mature
• Secondary lymphatic organs & tissues
 – site where most immune responses occur
 • lymph nodes, spleen & lymphatic nodules
Thymus Gland
(Primary lymphatic organ)

- Large organ in infants (70 g) but atrophied as adult (3 g)
- 2 lobed organ located in mediastinum
- Each lobule has cortex & medulla
- Cortex
 - tightly packed lymphocytes, macrophages, and epithelial cells
 - Epithelial cells help “educate” T cells
- Medulla
 - Same cells but less dense
 - Hassall’s corpuscles- clusters of dying cells, function unknown
Lymph Nodes
(secondary lymphatic organ)
Lymph Nodes

- Bean-shaped organs, up to 1 inch long, located along lymphatic vessels
 - scattered throughout body but concentrated near mammary glands, axillae & groin

- cortex
 - lymphatic nodules containing dendritic cells
 - antigen-presenting cells and macrophages
 - B cells proliferate into antibody-secreting plasma cells

- medulla
 - contains B cells & plasma cells in a network of reticular fibers and reticular epithelial cells
Lymph Nodes

- Flow is in one direction
 - afferent vessels lead in
 - sinuses lead to efferent vessels that exit at hilus
- Only nodes filter lymph
Metastasis Through Lymphatic System

- Characteristic of malignant tumors
- Spread of disease from one organ to another
 - cancer cells travel via blood or lymphatic system
 - cells establish new tumors where they lodge
- Secondary tumor sites can be predicted by direction of lymphatic flow from primary site
- Cancerous lymph nodes are firm, enlarged and nontender -- infected lymph nodes are not firm and are very tender
Spleen—secondary lymphatic organ

- 5 inch organ between stomach & diaphragm
- Hilus contains blood & lymphatic vessels
- White pulp and red pulp
 - white is lymphatic tissue (lymphocytes & macrophages) around branches of splenic artery
 - red pulp is venous sinuses filled with blood & splenic tissue (splenic cords)
Functions of Spleen

White pulp:

Lymphocytes and macrophages destroy foreign substances

Red pulp:

1. Removal of damaged blood cells
2. Storage of platelets
3. Production of blood cells during fetal life
Lymphatic Nodules

- Concentrations of lymphatic tissue not surrounded by a capsule scattered throughout connective tissue of mucous membranes
 - mucosa-associated lymphoid tissue (MALT)
- Peyer’s patches in the ileum of the small intestine
- Appendix
- Tonsils form ring at top of throat
 - adenoids (pharyngeal tonsil)
 - palatine tonsils (on each side wall)
 - lingual tonsil in the back of the tongue
Resistance
Ability to ward off damage or disease

• Nonspecific resistance
 – general defensive mechanisms effective on a wide range of pathogens

• Specific resistance (immunity)
 – Ability to fight a specific pathogen
 – cell-mediated immunity (T cells)
 – antibody-mediated immunity (B cells)
Nonspecific Resistance to Disease

• Immediate protection against wide variety of pathogens & foreign substances
 – lacks specific responses to specific invaders

• Mechanisms function regardless of type of invader
 – external mechanical & chemical barriers
 – internal nonspecific defenses
 • antimicrobial proteins
 • natural killer cells & phagocytes
 • inflammation & fever
Skin & Mucous Membranes

• Mechanical protection
 – skin (epidermis) closely packed, keratinized cells
 • shedding helps remove microbes
 – mucous membrane secretes viscous mucous
 • cilia & mucus trap & move microbes toward throat
 – washing action of tears, urine and saliva

• Chemical protection
 – sebum inhibits growth bacteria & fungus
 – perspiration lysozymes breakdown bacterial cells
 – acidic pH of gastric juice and vaginal secretions destroys bacteria
Internal Defenses

- Antimicrobial proteins discourage microbial growth
 - interferons
 - produced by virally infected lymphocytes & macrophages
 - diffuse to neighboring cells to induce synthesis of antiviral proteins
 - complement proteins
 - inactive proteins in blood plasma
 - when activated enhance immune, allergic & inflammatory reactions
 - transferrins
 - iron-binding proteins inhibit bacterial growth by reducing available iron
Natural Killer Cells & Phagocytes

• NK cells kill a variety of microbes & tumor cells
 – found in blood, spleen, lymph nodes & red marrow
 – attack cells displaying abnormal MHC antigens

• Phagocytes (neutrophils & macrophages)
 – ingest microbes or particulate matter
 – macrophages developed from monocytes
 • fixed macrophages stand guard in specific tissues
 – kupffer cells in the liver
 • wandering macrophages in most tissue
Phagocytosis

- **Chemotaxis**
 - attraction to chemicals from damaged tissues, complement proteins, or microbial products

- **Adherence**
 - attachment to plasma membrane of phagocyte

- **Ingestion**
 - engulf by pseudopods to form phagosome

- **Digestion & killing**
 - merge with lysosome containing digestive enzymes
 - exocytosis residual body
Inflammation

• Damaged cell initiates

• Signs of inflammation
 – redness
 – heat
 – swelling
 – pain

• Function is to trap microbes, toxins or foreign material & begin tissue repair
Fever

• Abnormally high body temperature that occurs because the hypothalamic thermostat is reset
• Occurs during infection & inflammation
 – bacterial toxins trigger release of fever-causing cytokines such as interleukin-1
• Benefits
 – intensifies effects of interferons, inhibits bacterial growth, speeds up tissue repair
Specific Resistance: Immunity

- Immunity is the body's ability to defend itself against specific foreign material or organisms – bacteria, toxins, viruses, cat dander, etc.
- Differs from nonspecific defense mechanisms – specificity----recognize self & non-self – memory----2nd encounter produces even more vigorous response
- Immune system is cells and tissues that produce the immune response
- Immunology is the study of those responses
Maturation of T and B Cells

- **T cell mature in thymus**
 - Cell-mediated response
 - Cell directly attacks the invading antigen
 - Effective against fungi, viruses, parasites, cancer, and tissue transplants

- **B cells in bone marrow**
 - Antibody-mediated response
 - Plasma cells secrete antibodies which affect antigens
 - Effective against bacteria
Antigens

• Molecules or bits of foreign material
 – entire microbes, parts of microbes, bacterial toxins, pollen, transplanted organs, incompatible blood cells

• Required characteristics to be considered an antigen
 – immunogenicity = ability to provoke immune response
 – reactivity = ability to react to cells or antibodies

• Get past the bodies nonspecific defenses
 – enter the bloodstream to be deposited in spleen
 – penetrate the skin & end up in lymph nodes
 – penetrate mucous membrane & lodge in associated lymphoid tissue
Chemical Nature of Antigens/Epitopes

- Large, complex molecules, usually proteins
 - if have simple repeating subunits are not usually antigenic (plastics in joint replacements)
 - small part of antigen that triggers the immune response is epitope
Diversity of Antigen Receptors

• Immune system can recognize and respond to a billion different epitopes -- even artificially made molecules.

• Explanation for great diversity of receptors is genetic recombination of few hundred small gene segments.

• Each B or T cell has its own unique set of gene segments that codes its unique antigen receptor in the cell membrane.
Major Histocompatibility Complex Antigens

- All our cells have unique surface markers (1000s molecules)
- MHC-I molecules are found in cell membrane of all cells except red blood cells
- MHC-II markers seen only on membrane of antigen presenting cells (macrophages, B cells, thymus cells)
- Function
 - if cell is infected with virus MHC-I contain bits of virus marking cell so T cells recognize there is a problem
 - if antigen presenting cells (macrophages or B cells) ingest foreign proteins, they will display as part of their MHC-II
Pathways of Antigen Processing

- B and T cells must recognize a foreign antigen before beginning their immune response
 - B cells can bind to antigen in extracellular fluid
 - T cells can only recognize fragments of antigens that have been processed and presented to them as part of a MHC molecule
 - Helper T cells “see” antigens if they are part of MHC-II molecules on surface of antigen presenting cell
 - Cytotoxic T cells “see” antigens if they are part of MHC-I molecules on surface of body cells
Processing of Exogenous Antigens

- Foreign antigen in body fluid is phagocytized by APC – macrophage, B cell, dendritic cell (Langerhans cell in skin)
- Antigen is digested and fragments are bound to MHC-II molecules stuck into antigen presenting cell membrane
- APC migrates to lymphatic tissue to find T cells
Processing of Endogenous Antigens

• Endogenous antigens are foreign proteins produced within a body cell --- viral or cancerous

• Fragments of proteins become part of MHC-I molecules displayed at surface of cell

• T cells recognize the antigen presented by the MHC-I molecule as foreign and initiates immune response.
Cell-Mediated Immunity

• Begins with activation of T cell by a specific antigen
• Result is T cell capable of an immune attack
 – elimination of the intruder by a direct attack
Activation, Proliferation & Differentiation of Cytotoxic T Cells

- Receptor on T cell binds to foreign antigen fragment part of MHC-I
- Costimulation from helper T cell
 - prevents accidental immune response
- Proliferates & differentiates into population (clone) of Tc cells and memory Tc cells
- Occurs in secondary lymphatic organs such as lymph node
Activation, Proliferation & Differentiation of Helper T Cells

- Receptor on CD4 cell binds to foreign antigen fragment associated with MHC-II
- Costimulation
- Proliferates & differentiates into population (clone) of T_H cells and long-lived memory T_H cells
Types of Mature T Cells

- Helper T cells (CD4)
- Cytotoxic (killer) T cells (CD 8)
- Memory T cells
Helper T Cells

- Display CD4 on surface so also known as T4 cells or T_H cells
- Recognize antigen fragments associated with MHC-II molecules & activated by APCs
- Function is to costimulate all other lymphocytes
 - secrete cytokines (small protein hormones)
 - autocrine function in that it costimulates itself to proliferate and secrete more interleukin (positive feedback effect causes formation of many more helper T cells)
Cytotoxic T Cells

- Display CD8 on surface
- Known as T8 or Tc or killer T cells
- Recognize antigen fragments associated with MHC-I molecules
 - cells infected with virus
 - tumor cells
 - tissue transplants
- Requires costimulation by cytokine from helper T cell
Memory T Cells

• T cells from a clone that did not turn into cytotoxic T cells during a cell-mediated response

• Available for swift response if a 2nd exposure should occur
Antigen-presenting cell (APC)

Costimulation

Antigen recognition

Inactive CD4+ T cell

CD4+ T cell

Activated helper T cell

Proliferation and differentiation

Clone of T_H cells secrete IL-2 and other cytokines

Memory T_H cells (long-lived)

(a) Helper T (T_H) cells or CD4+ cells

(b) Cytotoxic T (T_C) cells or CD8+ cells
Elimination of Invaders

- Cytotoxic T cells migrate to site of infection or tumor formation
- Recognize, attach & attack
 - secrete granules containing perforin that punch holes in target cell
 - secrete lymphotoxin that activates enzymes in the target cell causing its DNA to fragment
 - secrete gamma-interferon to activate phagocytic cells
Immunological Surveillance

- Cancerous cell displays weird surface antigens (tumor antigens)
- Surveillance = immune system finds, recognizes & destroys cells with tumor antigens
 - done by cytotoxic T cells, macrophages & natural killer cells
 - most effective in finding tumors caused by viruses
- Transplant patients taking immunosuppressive drugs suffer most from viral-induced cancers
Antibody-Mediated Immunity

• Millions of different B cells that can recognize different antigens and respond
• B cells sit still and let antigens be brought to them – stay put in lymph nodes, spleen or peyer’s patches
• Once activated, differentiate into plasma cells that secrete antibodies
• Antibodies circulate in lymph and blood – combines with epitope on antigen similarly to key fits a specific lock
Activation, Proliferation, & Differentiation of B Cells

• B cell receptors bind to antigen
• Helper T cell costimulates
• Rapid cell division & differentiation occurs
 – long-lived memory cells
 – clone of plasma cells
 • produce antibody at 2000 molecules/sec for 4-5 days
 • secrete only one kind antibody
• Antibody enters the circulation to attack antigen
Antibody Structure

- Glycoproteins called immunoglobulins
 - 4 polypeptide chains -- 2 heavy & 2 light chains
 - hinged midregion lets assume T or Y shape
 - tips are variable regions -- rest is constant region
 - 5 different classes based on constant region
 - IgG, IgA, IgM, IgD and IgE
 - tips form antigen binding sites
Antibody Actions

• Neutralization of antigen by blocking effects of toxins or preventing its attachment to body cells
• Immobilize bacteria by attacking cilia/flagella
• Agglutinate & precipitate antigens by cross-linking them causing clumping & precipitation
• Complement activation
• Enhances phagocytosis
Role of the Complement System

• Defensive system of plasma proteins that attack and destroy microbes
• System activated by 2 different pathways
• Produce same result
 – inflammation: dilation of arterioles, release of histamine & increased permeability of capillaries
 – opsonization: protein binds to microbe making it easier to phagocytize
 – cytolysis: a complex of several proteins can form holes in microbe membranes causing leakiness and cell rupture
Immunological Memory

• Primary immune response
 – first exposure to antigen response is steady, slow
 – memory cells may remain for decades

• Secondary immune response with 2nd exposure
 – 1000’s of memory cells proliferate & differentiate into plasma cells & cytotoxic T cells
 – recognition & removal occurs quickly

![Graph showing primary and secondary immune responses](image-url)
Self-Recognition & Immunological Tolerance

- T cells must learn to recognize self & lack reactivity to self proteins
- T cells mature in thymus
 - those that can’t recognize self or react to it
 - destroyed by programmed cell death (apoptosis or deletion)
 - inactivated (anergy) -- alive but unresponsive
 - only 1 in 100 emerges immunocompetent T cell
- B cells develop in bone marrow same way
Development of Self-Recognition & Immunological Tolerance

(a) Positive and negative selection of T cells in the thymus gland

- Does immature CD4+ cell recognize MHC-II and does CD8+ cell recognize MHC-I?
 - Yes: Positive selection
 - No: Death of cells that cannot recognize self-MHC

- Is TCR capable of binding to and recognizing self-peptides?
 - Yes: Anergy (inactivation) of T cell
 - No: Survival of T cells that can recognize self-MHC molecules but not self-peptides

- Deletion (death) of T cell

(b) Selection of T cells after they emerge from the thymus gland

- Mature T cell in lymphatic tissue
 - Antigen recognition with costimulation: Activation of T cell, which proliferates and differentiates
 - Antigen recognition without costimulation: Anergy (inactivation) of T cell
 - Deletion signal (?): Death of T cell

(c) Selection of B cells

- Does immature B cell in bone marrow recognize self-MHC molecule or other self-antigens?
 - Yes: Negative selection
 - No: Mature B cell recognizes antigen (first signal)

- Costimulation (second signal)
 - Yes: Activation of B cell, which proliferates and differentiates into clone of plasma cells
 - No: Anergy (inactivation) of B cell in secondary lymphatic tissues and blood

Key:
- Green: Cell survival or activation
- Red: Cell death or anergy (inactivation)