The Cardiovascular System: Blood Vessels and Hemodynamics

- Structure and function of blood vessels
- Major circulatory routes
Anatomy of Blood Vessels

• Closed system of tubes that carries blood
• Arteries carry blood from heart to tissues
 – elastic arteries
 – muscular arteries
 – arterioles
• Capillaries are thin enough to allow exchange
• Venules merge to form veins that bring blood back to the heart
• Vasa vasorum is vessels in walls of large vessel
Arteries

• Tunica interna (intima)
 – simple squamous epithelium known as endothelium
 – basement membrane
 – internal elastic lamina

• Tunica media
 – circular smooth muscle & elastic fibers

• Tunica externa
 – elastic & collagen fibers
Sympathetic Innervation

- Vascular smooth muscle is innervated by sympathetic nervous system
 - increase in stimulation causes muscle contraction or vasoconstriction
 - decreases diameter of vessel
 - decrease in stimulation or presence of certain chemicals causes vasodilation
 - increases diameter of vessel
Elastic Arteries

- Largest-diameter arteries have lot of elastic fibers in tunica media
- Help propel blood onward despite ventricular relaxation (stretch and recoil)
Muscular Arteries

• Medium-sized arteries with more muscle than elastic fibers in tunica media
• Capable of greater vasoconstriction and vasodilation to adjust rate of flow
 – walls are relatively thick
Arterioles

• Small arteries delivering blood to capillaries
 – tunica media containing few layers of muscle
• Metarterioles form branches into capillary bed
Capillaries form Microcirculation

- Microscopic vessels that connect arterioles to venules
- Found near every cell in the body but more extensive in highly active tissue (muscles, liver, kidneys & brain)
 - entire capillary bed fills with blood when tissue is active
 - lacking in epithelia, cornea and lens of eye & cartilage
- Function is exchange of nutrients & wastes between blood and tissue fluid
- Structure is single layer of simple squamous epithelium and its basement membrane
Types of Capillaries

- Continuous capillaries
 - gaps between neighboring cells
 - muscle and lungs
- Fenestrated capillaries
 - plasma membranes have many holes
 - kidneys, small intestine & endocrine glands
- Sinusoids
 - very large fenestrations
 - incomplete basement membrane
 - liver, bone marrow, & spleen
Capillary Exchange

• Movement of materials in & out of a capillary
 – diffusion (most important method)
 • substances move down concentration gradient
 • all plasma solutes except large proteins pass freely across
 – through lipid bilayer, fenestrations or gaps between cells
 – blood brain barrier does not allow diffusion of water-soluble
 materials (nonfenestrated epithelium with tight junctions)
 – transcytosis
 • passage of material across endothelium in tiny vesicles by
 endocytosis and exocytosis
(d) Transverse section through an artery

(e) Red blood cells passing through a capillary
Venules

- Small veins collecting blood from capillaries
- Tunica media contains only a few smooth muscle cells & scattered fibroblasts
Veins

• Proportionally thinner walls than same diameter artery
 – tunica media less muscle
 – lack external & internal elastic lamina

• Still adaptable to variations in volume & pressure

• Valves are thin folds of tunica interna designed to prevent backflow
Varicose Veins

• Twisted, dilated superficial veins
 – caused by leaky venous valves
 • congenital or mechanically stressed from prolonged standing or pregnancy
 – allow backflow and pooling of blood
 • extra pressure forces fluids into surrounding tissues
 • nearby tissue is inflamed and tender

• Deeper veins not susceptible because of support of surrounding muscles
Blood Distribution

- 60% of blood volume at rest is in systemic veins and venules
 - function as blood reservoir
 - veins of skin & abdominal organs
 - blood is diverted from it in times of need
 - increased muscular activity produces venoconstriction
- hemorrhage causes venoconstriction to help maintain blood pressure
Circulatory Routes

- Systemic circulation is left side heart to body & back to heart
- Hepatic Portal circulation is capillaries of GI tract to capillaries in liver
- Pulmonary circulation is right-side heart to lungs & back to heart
- Fetal circulation is from fetal heart through umbilical cord to placenta & back
Systemic Circulation

- All systemic arteries branch from the aorta
- All systemic veins drain into the superior or inferior vena cava or coronary sinus to return to the right-side of heart
Arterial Branches of Systemic Circulation

- All are branches from aorta supplying arms, head, lower limbs and all viscera with O2 from the lungs
- Aorta arises from left ventricle (thickest chamber)
 - 4 major divisions of aorta
 - ascending aorta
 - arch of aorta
 - thoracic aorta
 - abdominal aorta
Aorta and Its Superior Branches

- Aorta is largest artery of the body
 - ascending aorta
 - 2 coronary arteries supply myocardium
 - arch of aorta -- branches to the arms & head
 - brachiocephalic trunk branches into right common carotid and right subclavian
 - left subclavian & left carotid arise independently
 - thoracic aorta supplies branches to pericardium, esophagus, bronchi, diaphragm, intercostal & chest muscles, mammary gland, skin, vertebrae and spinal cord
Abdominal Aorta and Its Branches

- Supplies abdominal & pelvic viscera & lower extremities
- Splits into common iliac arteries at 4th lumbar vertebrae
Coronary Circulation

- Right & left coronary arteries branch to supply heart muscle
Veins of the Systemic Circulation

- Drain blood from entire body & return it to right side of heart
- Deep veins parallel the arteries in the region
- Superficial veins are found just beneath the skin
- All venous blood drains to either superior or inferior vena cava or coronary sinus
Major Systemic Veins

- All empty into the right atrium of the heart
 - superior vena cava drains the head and upper extremities
 - inferior vena cava drains the abdomen, pelvis & lower limbs
 - coronary sinus is large vein draining the heart muscle back into the heart