RECREATION OUTGRANT AT LOPEZ DEBRIS BASIN FOR LOS ANGELES MISSION COLLEGE ATHLETIC FIELDS

ENVIRONMENTAL ASSESSMENT

DRAFT

State Clearinghouse No. 2002091071

Prepared for

U.S. Army Corps of Engineers
915 Wilshire Boulevard
Los Angeles, CA 90017

Applicant:
Los Angeles Community College District
770 Wilshire Boulevard, Los Angeles, CA 90017

September 2009

URS
915 Wilshire Boulevard, Suite 700
Los Angeles, CA 90017
Tel: 213.996.2200 Fax: 213.996.2290

URS Project No. 29405396
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.3</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1.4</td>
<td>1-9</td>
</tr>
<tr>
<td>1.1.5</td>
<td>1-10</td>
</tr>
<tr>
<td>1.1.6</td>
<td>1-13</td>
</tr>
<tr>
<td>1.1.7</td>
<td>1-13</td>
</tr>
<tr>
<td>1.2</td>
<td>1-13</td>
</tr>
<tr>
<td>1.2.1</td>
<td>1-13</td>
</tr>
<tr>
<td>1.2.2</td>
<td>1-14</td>
</tr>
<tr>
<td>1.3</td>
<td>1-17</td>
</tr>
<tr>
<td>1.3.1</td>
<td>1-17</td>
</tr>
<tr>
<td>1.3.2</td>
<td>1-17</td>
</tr>
<tr>
<td>1.3.3</td>
<td>1-18</td>
</tr>
<tr>
<td>1.3.4</td>
<td>1-18</td>
</tr>
<tr>
<td>1.3.5</td>
<td>1-18</td>
</tr>
<tr>
<td>1.4</td>
<td>1-33</td>
</tr>
<tr>
<td>1.4.1</td>
<td>1-33</td>
</tr>
<tr>
<td>1.4.2</td>
<td>1-34</td>
</tr>
<tr>
<td>1.4.3</td>
<td>1-34</td>
</tr>
<tr>
<td>1.4.4</td>
<td>1-37</td>
</tr>
<tr>
<td>1.4.5</td>
<td>1-38</td>
</tr>
<tr>
<td>1.4.6</td>
<td>1-38</td>
</tr>
<tr>
<td>1.4.7</td>
<td>1-38</td>
</tr>
<tr>
<td>1.4.8</td>
<td>1-38</td>
</tr>
<tr>
<td>1.4.9</td>
<td>1-39</td>
</tr>
<tr>
<td>1.4.10</td>
<td>1-39</td>
</tr>
<tr>
<td>1.4.11</td>
<td>1-40</td>
</tr>
<tr>
<td>2.0</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2.1</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2.2</td>
<td>2-6</td>
</tr>
<tr>
<td>3.0</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>3-3</td>
</tr>
<tr>
<td>3.1.1</td>
<td>3-3</td>
</tr>
<tr>
<td>3.1.2</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>3-9</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2.1 AFFECTED ENVIRONMENT</td>
<td>3-9</td>
</tr>
<tr>
<td>3.2.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3 NATURAL DRAINAGE</td>
<td>3-13</td>
</tr>
<tr>
<td>3.3.1 AFFECTED ENVIRONMENT</td>
<td>3-13</td>
</tr>
<tr>
<td>3.3.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-13</td>
</tr>
<tr>
<td>3.4 RIPARIAN AND WETLAND RESOURCES</td>
<td>3-15</td>
</tr>
<tr>
<td>3.4.1 AFFECTED ENVIRONMENT</td>
<td>3-15</td>
</tr>
<tr>
<td>3.4.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-15</td>
</tr>
<tr>
<td>3.5 ENDANGERED AND THREATENED SPECIES</td>
<td>3-19</td>
</tr>
<tr>
<td>3.5.1 AFFECTED ENVIRONMENT</td>
<td>3-19</td>
</tr>
<tr>
<td>3.5.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-20</td>
</tr>
<tr>
<td>3.6 CULTURAL RESOURCES</td>
<td>3-23</td>
</tr>
<tr>
<td>3.6.1 AFFECTED ENVIRONMENT</td>
<td>3-23</td>
</tr>
<tr>
<td>3.6.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-35</td>
</tr>
<tr>
<td>3.7 WATER QUALITY AND SUPPLY</td>
<td>3-45</td>
</tr>
<tr>
<td>3.7.1 AFFECTED ENVIRONMENT</td>
<td>3-45</td>
</tr>
<tr>
<td>3.7.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-50</td>
</tr>
<tr>
<td>3.8 FLOOD CONTROL AND HYDROLOGY</td>
<td>3-55</td>
</tr>
<tr>
<td>3.8.1 AFFECTED ENVIRONMENT</td>
<td>3-55</td>
</tr>
<tr>
<td>3.8.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-55</td>
</tr>
<tr>
<td>3.9 RECREATION</td>
<td>3-59</td>
</tr>
<tr>
<td>3.9.1 AFFECTED ENVIRONMENT</td>
<td>3-59</td>
</tr>
<tr>
<td>3.9.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-60</td>
</tr>
<tr>
<td>3.10 AIR QUALITY</td>
<td>3-65</td>
</tr>
<tr>
<td>3.10.1 AFFECTED ENVIRONMENT</td>
<td>3-65</td>
</tr>
<tr>
<td>3.10.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-70</td>
</tr>
<tr>
<td>3.11 SOILS AND GEOLOGY</td>
<td>3-79</td>
</tr>
<tr>
<td>3.11.1 AFFECTED ENVIRONMENT</td>
<td>3-79</td>
</tr>
<tr>
<td>3.11.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-83</td>
</tr>
<tr>
<td>3.12 EROSION AND SEDIMENTATION</td>
<td>3-89</td>
</tr>
<tr>
<td>3.12.1 AFFECTED ENVIRONMENT</td>
<td>3-89</td>
</tr>
<tr>
<td>3.12.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-89</td>
</tr>
<tr>
<td>3.13 MINERAL RESOURCES</td>
<td>3-91</td>
</tr>
<tr>
<td>3.13.1 AFFECTED ENVIRONMENT</td>
<td>3-91</td>
</tr>
<tr>
<td>3.13.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-91</td>
</tr>
<tr>
<td>3.14 LAND USE AND MASTER PLAN COMPATIBILITY</td>
<td>3-93</td>
</tr>
<tr>
<td>3.14.1 AFFECTED ENVIRONMENT</td>
<td>3-93</td>
</tr>
<tr>
<td>3.14.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-93</td>
</tr>
<tr>
<td>3.15 ECONOMICS</td>
<td>3-101</td>
</tr>
<tr>
<td>3.15.1 AFFECTED ENVIRONMENT</td>
<td>3-101</td>
</tr>
<tr>
<td>3.15.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-101</td>
</tr>
<tr>
<td>3.16 SAFETY, HEALTH, HAZARDOUS WASTES, AND SOLID WASTES</td>
<td>3-105</td>
</tr>
<tr>
<td>3.16.1 AFFECTED ENVIRONMENT</td>
<td>3-105</td>
</tr>
<tr>
<td>3.16.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-116</td>
</tr>
<tr>
<td>3.17 NOISE</td>
<td>3-121</td>
</tr>
<tr>
<td>3.17.1 AFFECTED ENVIRONMENT</td>
<td>3-121</td>
</tr>
<tr>
<td>3.17.2 ENVIRONMENT CONSEQUENCES</td>
<td>3-122</td>
</tr>
<tr>
<td>3.18 TRAFFIC</td>
<td>3-129</td>
</tr>
</tbody>
</table>
Table of Contents

4.2.8 Flood Control and Hydrology ... 4-5
4.2.9 Recreation ... 4-5
4.2.10 Air Quality .. 4-6
4.2.11 Soils and Geology .. 4-6
4.2.12 Erosion and Sedimentation ... 4-6
4.2.13 Mineral Resources .. 4-6
4.2.14 Land Use and Master Plan Compatibility ... 4-6
4.2.15 Economics .. 4-6
4.2.16 Safety, Health, Hazardous Wastes, and Solid Wastes 4-7
4.2.17 Noise .. 4-7
4.2.18 Traffic .. 4-7
4.2.19 Aesthetics ... 4-7
4.2.20 Scientific and Educational Value ... 4-7
4.2.21 Energy Needs and Efficiency ... 4-7
4.2.22 Environmental Justice ... 4-7
4.3 Comparison of Alternatives ... 4-8

5.0 MITIGATION ... 5-1

6.0 COMPLIANCE WITH APPLICABLE FEDERAL ENVIRONMENTAL LAWS AND REGULATIONS ... 6-1

7.0 COORDINATION AND RELATED ENVIRONMENTAL DOCUMENTATION 7-1

7.1 Shared Governance Process and LAMC Facilities Master Plan Design Approach 7-1
7.2 CEQA Process .. 7-2
7.3 Public Scoping ... 7-3
7.4 Distribution of EA .. 7-4
7.5 Individuals and Agencies Consulted ... 7-5
7.5.1 Federal .. 7-5
7.5.2 State ... 7-6
7.5.3 Regional .. 7-8
7.5.4 County .. 7-9
7.5.5 City .. 7-10
7.5.6 Organizations .. 7-11
7.5.7 Property Owner List .. 7-11
7.5.8 Newspapers .. 7-11
7.6 Discretionary Actions and Permits .. 7-12
7.7 Responsible Agencies .. 7-12
7.8 Past, Present, and Reasonably Foreseeable Future Actions 7-13
7.8.1 Planned Developments in the Area ... 7-13
7.8.2 LAMC 2007 Facilities Master Plan .. 7-14
7.8.3 LAMC 2009 Facilities Master Plan .. 7-19

8.0 REFERENCES .. 8-1

8.1 Books Reports and Journals ... 8-1
8.2 Personal Communications ... 8-11
8.3 Codes and Regulations .. 8-11
Table of Contents

APPENDICES
- Appendix A Biological Resources Data and Reports
- Appendix B Cultural Resources Assessment
- Appendix C Market Study
- Appendix D Feasibility Study
- Appendix E Clean Water Act Section 404 Permit – Supporting Analysis for Bank Stabilization

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1a</td>
<td>Example Layout of Baseball Field</td>
</tr>
<tr>
<td>Figure 1-1b</td>
<td>Example Layout of Soccer and Softball Fields</td>
</tr>
<tr>
<td>Figure 1-2</td>
<td>Elevation of Proposed Athletic Field Structures</td>
</tr>
<tr>
<td>Figure 1-3</td>
<td>Habitat Protection and Fencing</td>
</tr>
<tr>
<td>Figure 1-4</td>
<td>Athletic Fields Proposed in LAMC 2009 Facilities Master Plan</td>
</tr>
<tr>
<td>Figure 1-5</td>
<td>Regional Location Map</td>
</tr>
<tr>
<td>Figure 1-6</td>
<td>Existing Land Use and Zoning Map</td>
</tr>
<tr>
<td>Figure 1-7</td>
<td>Topography Map</td>
</tr>
<tr>
<td>Figure 1-8</td>
<td>Existing Utilities</td>
</tr>
<tr>
<td>Figure 1-9</td>
<td>Proposed Land Use Classification</td>
</tr>
<tr>
<td>Figure 1-10</td>
<td>Proposed Resource Uses</td>
</tr>
<tr>
<td>Figure 1-11</td>
<td>Proposed 2009 Facilities Master Plan</td>
</tr>
<tr>
<td>Figure 1-12</td>
<td>North and South Washouts</td>
</tr>
<tr>
<td>Figure 2-1</td>
<td>Vacant Lands within 10 miles of LAMC</td>
</tr>
<tr>
<td>Figure 3.1-1</td>
<td>Vegetation Communities – Athletic Fields</td>
</tr>
<tr>
<td>Figure 3.6-1</td>
<td>Tribal Area Map</td>
</tr>
<tr>
<td>Figure 3.6-2</td>
<td>Old Spanish and Mexican Ranchos</td>
</tr>
<tr>
<td>Figure 3.6-3</td>
<td>Geology Map</td>
</tr>
<tr>
<td>Figure 3.7-1</td>
<td>Pacoima Wash Watershed Map</td>
</tr>
<tr>
<td>Figure 3.8-1</td>
<td>Flood Plain Map</td>
</tr>
<tr>
<td>Figure 3.9-1</td>
<td>Local and Regional Parks</td>
</tr>
<tr>
<td>Figure 3.11-1</td>
<td>Geologic Map</td>
</tr>
<tr>
<td>Figure 3.11-2</td>
<td>Alquist-Priolo Earthquake Fault Zone</td>
</tr>
<tr>
<td>Figure 3.14-1</td>
<td>Aerial View of Project Site</td>
</tr>
<tr>
<td>Figure 3.14-2</td>
<td>Existing Land Use and Zoning Map</td>
</tr>
<tr>
<td>Figure 3.16-1</td>
<td>Fire Station Locations</td>
</tr>
<tr>
<td>Figure 3.16-2</td>
<td>Fire Hazard Severity Zone Map</td>
</tr>
<tr>
<td>Figure 3.16-3</td>
<td>Police Station Locations</td>
</tr>
<tr>
<td>Figure 3.17-1</td>
<td>Location of Noise Measurement Sites</td>
</tr>
<tr>
<td>Figure 3.18-1</td>
<td>Key Roadways in the Project Area</td>
</tr>
<tr>
<td>Figure 3.19-1</td>
<td>Viewpoint Location Map</td>
</tr>
<tr>
<td>Figure 3.19-2</td>
<td>View of Athletic Fields Site from Mountain Glen Terrace</td>
</tr>
</tbody>
</table>
Table of Contents

Figure 3.19-3 Athletic Fields Site Views – Existing
Figure 3.19-4 View of Existing Athletic Fields Site from VP – 2 Mountain Glen Terrace
Figure 3.19-5 View of Existing Athletic Fields Site from VP – 3 Golf Course
Figure 3.19-6 View of SIBL and Athletic Fields Site – Existing
Figure 3.19-7 Views of Golf Course – Existing
Figure 3.19-8 Night View of Athletic Fields – Existing
Figure 3.19-9 Proposed Athletic Fields – Day
Figure 3.19-10 Panoramic View of Existing Athletic Fields Site from Mountain Glen Terrace – Day
Figure 3.19-11 Athletic Fields Looking Northeast – Day
Figure 3.19-12 Athletic Fields Looking to the Southeast – Day
Figure 3.19-13 Aerial View of Ball Fields – Lighting Design
Figure 3.19-14 Proposed Athletic Fields Looking from Southwest to the Northeast – Night
Figure 3.19-15 Proposed Athletic Fields Looking from Southwest to the Northeast – Day
Figure 3.22 1 Census Tract Boundaries
Figure 7-1 Reasonably Foreseeable Future Projects

LIST OF TABLES
Table 3.7-1 Water Quality Objectives for Pacoima Wash
Table 3.7-2 Event Mean Concentrations (EMCs)
Table 3.7-3 Post Development Pollutant Load
Table 3.7-4 Post Development Pollutant Load
Table 3.10-1 Federal and State Attainment/Non-attainment Designations for the South Coast Air Basin
Table 3.10-2 Federal and State Air Quality Ambient Standards
Table 3.10-3 Greenhouse Gas Emissions by Sector in 1990 and 2004
Table 3.10-4 On-Road Emission Factors
Table 3.10-5 Unmitigated Peak Daily Construction Emissions from the Proposed Project
Table 3.10-6 2015 Peak Daily Operational Emissions from the Proposed Project
Table 3.10-7 Peak Operational GHG Emissions from the Proposed Project
Table 3.10-8 Construction Projects Planned in the LAMC 2009 Facilities Master Plan
Table 3.10-9 Unmitigated Cumulative Peak Daily Construction Emissions from LAMC 2009 Facilities Master Plan Projects
Table 3.10-10 Unmitigated Cumulative Peak Daily Construction Emissions, VOC
Table 3.10-11 2015 Peak Daily Operational Emissions from LAMC 2009 Facilities Master Plan Projects
Table 3.10-12 2015 Peak Operational GHG Emissions
Table 3.16-1 Existing Fire Protection Services
Table 3.16-2 Existing Police Protection Services and Response Times
Table 3.17-1 Athletic Fields Noise Levels
Table 3.17-2 Existing and Future Noise Levels
Table 3.18-1 Signalized Pedestrian Crossing Locations
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.18-2</td>
<td>Level of Service Descriptions</td>
</tr>
<tr>
<td>Table 3.18-3</td>
<td>Study Intersections</td>
</tr>
<tr>
<td>Table 3.18-4</td>
<td>Study Area Roadway Segments Existing Daily Volume and LOS</td>
</tr>
<tr>
<td>Table 3.18-5</td>
<td>Level of Service Criteria for Stop Controlled Unsignalized Intersections</td>
</tr>
<tr>
<td>Table 3.18-6</td>
<td>Standards for Limiting Increases in Intersection Volume to Capacity Ratios</td>
</tr>
<tr>
<td>Table 3.18-7</td>
<td>Standards for Limiting Increases in Intersection Volume to Capacity Ratios</td>
</tr>
<tr>
<td>Table 3.18-8</td>
<td>2015 Project Trip Generation</td>
</tr>
<tr>
<td>Table 3.19-1</td>
<td>Relationship of Impact Intensity and Visual Sensitivity to an Effect’s Being Perceived as a Substantial Reduction in Visual Quality</td>
</tr>
<tr>
<td>Table 3.21-1</td>
<td>Current Energy Mix</td>
</tr>
<tr>
<td>Table 3.22-1</td>
<td>Jurisdictional Census Tract Characterization</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Comparison of Effects from Alternatives by Issue Area</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Summary of Project Impacts and Mitigation Measures</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Federal Laws and Regulations</td>
</tr>
<tr>
<td>Table 7-1</td>
<td>Environmental Issues Requiring Analysis in Subsequent EIR</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Discretionary Actions and Permits</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>Reasonably Foreseeable Future Projects</td>
</tr>
<tr>
<td>Table 7-4</td>
<td>Square Footage and Heights of Existing and Previously Approved LAMC Structures</td>
</tr>
<tr>
<td>Table 7-5</td>
<td>2009 LAMC Facilities Master Plan Floor Areas</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.D.</td>
<td>Anno Domini</td>
</tr>
<tr>
<td>AB 32</td>
<td>Assembly Bill 32</td>
</tr>
<tr>
<td>ACOE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>ADT</td>
<td>average daily traffic</td>
</tr>
<tr>
<td>af</td>
<td>acre-feet</td>
</tr>
<tr>
<td>APEFZ</td>
<td>Alquist-Priolo Earthquake Fault Zones</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan District</td>
</tr>
<tr>
<td>B.C.</td>
<td>Before Christ</td>
</tr>
<tr>
<td>B.P.</td>
<td>Before Present</td>
</tr>
<tr>
<td>Basin</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>BAU</td>
<td>business as usual</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>California OHP</td>
<td>California Office of Historic Preservation</td>
</tr>
<tr>
<td>CALVENO</td>
<td>California specific vehicle noise curves</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CBC</td>
<td>California Building Code</td>
</tr>
<tr>
<td>CCAR</td>
<td>California Climate Action Registry</td>
</tr>
<tr>
<td>CDFG</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQ</td>
<td>Center of Environmental Quality</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFG</td>
<td>California Fish and Game</td>
</tr>
<tr>
<td>CFGC</td>
<td>California Fish and Game Code</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CHL</td>
<td>California Historical Landmarks</td>
</tr>
<tr>
<td>CMA</td>
<td>Critical Movement Analysis</td>
</tr>
<tr>
<td>CMP</td>
<td>Los Angeles County Congestion Management Program</td>
</tr>
<tr>
<td>CNDDB</td>
<td>California Natural Diversity Data Base</td>
</tr>
<tr>
<td>CNEL</td>
<td>Community Noise Equivalent Level</td>
</tr>
<tr>
<td>CNPS</td>
<td>California Native Plant Society</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂ₑ</td>
<td>CO₂ equivalent emission rate</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CSUF</td>
<td>California State University Fullerton</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dB(A) or dBA</td>
<td>A-weighted sound pressure level</td>
</tr>
<tr>
<td>DOT</td>
<td>The U.S. Department of Transportation</td>
</tr>
<tr>
<td>DPR</td>
<td>Department of Parks and Recreation</td>
</tr>
<tr>
<td>Draft EIR</td>
<td>Draft Subsequent Environmental Impact Report</td>
</tr>
<tr>
<td>DSA</td>
<td>Division of the State Architect</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resources</td>
</tr>
<tr>
<td>EMC</td>
<td>Event Mean Concentration</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act (federal)</td>
</tr>
<tr>
<td>fc</td>
<td>footcandle</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FONSI</td>
<td>finding of no significant impact</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>GRP</td>
<td>General Reporting Protocol</td>
</tr>
<tr>
<td>gsf</td>
<td>gross square feet</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potentials</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbons</td>
</tr>
<tr>
<td>HFE</td>
<td>hydrofluorinated ethers</td>
</tr>
<tr>
<td>HPOZ</td>
<td>Historic Period Overlay Zones</td>
</tr>
<tr>
<td>I-210</td>
<td>Foothill Freeway</td>
</tr>
<tr>
<td>I-5</td>
<td>Golden State Freeway</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>LACCD</td>
<td>Los Angeles Community College District</td>
</tr>
<tr>
<td>LACOPS</td>
<td>Los Angeles County Office of Public Safety</td>
</tr>
<tr>
<td>LADOT</td>
<td>City of Los Angeles Department of Transportation</td>
</tr>
<tr>
<td>LADWP</td>
<td>Los Angeles Department of Water and Power</td>
</tr>
<tr>
<td>LAHCM</td>
<td>Los Angeles Historical Cultural Monument</td>
</tr>
<tr>
<td>LAMC or College</td>
<td>Los Angeles Mission College</td>
</tr>
<tr>
<td>LAPD</td>
<td>Los Angeles Police Department</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>Leighton Consulting, Inc.</td>
<td>Leighton Consulting, Inc.</td>
</tr>
<tr>
<td>L_{eq}</td>
<td>equivalent sound level</td>
</tr>
<tr>
<td>LID</td>
<td>low impact development</td>
</tr>
<tr>
<td>L_{max}</td>
<td>Maximum A-weighted noise level recorded for a single event</td>
</tr>
<tr>
<td>LOS</td>
<td>level of service</td>
</tr>
<tr>
<td>Lowney</td>
<td>Lowney Associates</td>
</tr>
<tr>
<td>LT-1</td>
<td>Long-term Site 1</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>MG/yr</td>
<td>million gallons per year</td>
</tr>
<tr>
<td>MMBtu</td>
<td>million British thermal units</td>
</tr>
<tr>
<td>MMT CO$_2$e</td>
<td>million metric tons of carbon dioxide equivalent</td>
</tr>
<tr>
<td>MTA</td>
<td>Los Angeles County Metropolitan Transportation Authority</td>
</tr>
<tr>
<td>MTCO$_2$e/yr</td>
<td>metric tons carbon dioxide equivalent per year</td>
</tr>
<tr>
<td>Mw</td>
<td>megawatt</td>
</tr>
<tr>
<td>MWD</td>
<td>Metropolitan Water District</td>
</tr>
<tr>
<td>MWh</td>
<td>megawatt hour</td>
</tr>
<tr>
<td>MWh/yr</td>
<td>megawatt hours per year</td>
</tr>
<tr>
<td>N_2O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>NCAA</td>
<td>National Collegiate Athletics Association</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NF3</td>
<td>nitrogen trifluoride</td>
</tr>
<tr>
<td>NFIP</td>
<td>National Flood Insurance Program</td>
</tr>
<tr>
<td>NHMLAC</td>
<td>Natural History Museum of Los Angeles County</td>
</tr>
<tr>
<td>NO²</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOA</td>
<td>Notice of Availability</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NOₓ</td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPS</td>
<td>non-point source</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbons</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter less than 10 microns</td>
</tr>
<tr>
<td>PM₂₅</td>
<td>particulate matter less than 2.5 microns</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PSOMAS</td>
<td>PSOMAS Engineering</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>Qae</td>
<td>Older Dissected Surficial Sediments</td>
</tr>
<tr>
<td>Qg and Qa</td>
<td>surficial sediments</td>
</tr>
<tr>
<td>QTs</td>
<td>Saugus Formation (deep sediments)</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>ROG</td>
<td>Reactive Organic Gas</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable Portfolio Standard</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SAR</td>
<td>Second Assessment Report</td>
</tr>
<tr>
<td>SARA</td>
<td>Superfund Amendment and Reauthorization Act Title II</td>
</tr>
<tr>
<td>SCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SCCIC</td>
<td>South Central Coastal Information Center</td>
</tr>
<tr>
<td>SCCRA</td>
<td>Southern California Regional Rail Association</td>
</tr>
<tr>
<td>SDF</td>
<td>Spillway Design Flood</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulfur hexafluoride</td>
</tr>
<tr>
<td>SIBL</td>
<td>Sylmar Independent Baseball League</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SPD</td>
<td>South Pacific Division</td>
</tr>
<tr>
<td>ST-1</td>
<td>Short-term Site 1</td>
</tr>
<tr>
<td>SUSMP</td>
<td>Standard Urban Stormwater Mitigation Plan</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State of California Water Resources Control Board</td>
</tr>
<tr>
<td>TWSC</td>
<td>two-way stop controlled</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California, Los Angeles</td>
</tr>
<tr>
<td>URS</td>
<td>URS Corporation</td>
</tr>
<tr>
<td>USFWS</td>
<td>US Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>V/C</td>
<td>volume to capacity</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>VP</td>
<td>Viewing Position</td>
</tr>
<tr>
<td>VPHPL</td>
<td>vehicles per hour per lane</td>
</tr>
<tr>
<td>Wilson</td>
<td>Wilson Geosciences</td>
</tr>
<tr>
<td>WQMP</td>
<td>Water Quality Management Plan</td>
</tr>
</tbody>
</table>
1.0 PROJECT DESCRIPTION

It is the policy of the United States (U.S.) to promote the “efficient and economical use of America’s real property assets” (Executive Order 13327). Under this policy, the U.S. Army Corps of Engineers (ACOE) operates an outgrant program that provides procedures to permit third parties to use U.S. owned land for purposes that do not conflict with the needs of a federal project or a Department of Defense mission. The ACOE has identified lands that may be available for secondary use at Lopez Flood Basin, “the Federal Project.”

Los Angeles Mission College (LAMC or College) has submitted a request to develop athletic fields on ACOE lands that have been designated as available for compatible recreational use. These lands are on the west side of the Pacoima Wash, north of the intersection of Harding Street and Maclay Street in Sylmar, California. The development proposed by the College conforms to the land use designation specified for these lands in the ACOE Lopez Dam Master Plan and would occur at an elevation that would not affect dam storage or operation.

The LACCD has applied to the ACOE for a lease of its property (Proposed Action). The ACOE is authorized to issue leases pursuant to 10 U.S.C. 2667. Before the ACOE can issue the lease, it must conduct an environmental review of its Proposed Action pursuant to the National Environmental Policy Act (NEPA). This federal Environmental Assessment (EA), prepared in accordance with NEPA, serves to evaluate the potential environmental effects of the ACOE issuing the lease and determine whether it would be appropriate to issue a finding of no significant impact (FONSI), or if an environmental impact statement (EIS) is required. The EA also serves to support decisions that the ACOE may make regarding modification of the road easement on ACOE Property, review, approval and oversight of the applicant’s project plans, and issuance of a Clean Water Act a Section 404 permit, which LACCD must obtain before it can place stabilizing revetments along the bank of the Pacoima Wash. Since certain sensitive species have been observed at the site, the EA may also be used by the US Fish and Wildlife Service regarding its issuance of a Biological Opinion pursuant to Section 7 of the Endangered Species Act.

As discussed in detail below, the project that would be implemented upon receiving the above approvals consists of constructing a combination of soccer, softball, and/or baseball fields, ancillary structures, and a parking lot for use by LAMC students. In addition, utilities would be brought to the site, the existing roadway through the site would be improved and realigned, and the adjacent wash bank would be stabilized. Together, in this EA these activities are termed the “proposed project.”

The College plans a similar development on an adjacent property owned by the Los Angeles Community College District (LACCD). Together, the LACCD and ACOE properties are referred to in this document as the proposed “LAMC Athletic Fields.” Development of the LAMC Athletic Fields is one of the projects included in LAMC’s 2009 Facilities Master Plan.

1.1 Description of the Project and Proposed Action

The section discusses the Proposed Action and federal scope of analysis of this EA. It then describes features of the proposed project with regards to construction and operation plans and schedule. It concludes with a discussion of how the project fits in with LAMC’s 2009 Facilities Master Plan projects to provide context for the cumulative analysis.
1.0 Project Description

1.1.1 Proposed Action and Federal Scope of Analysis

The federal scope of analysis of this EA relates to effects on property owned by the ACOE, effects on waters of the United States from cut and fill activities, effects on potentially endangered and threatened species from development and use of the site, and effects related to other federal, state, and local regulations and policies.

The Proposed Action is approval by ACOE of LACCD’s request for a 25-year term lease with a 25-year renewable term option for development and use of ACOE Property along the west side of the Pacoima Wash by LAMC as athletic playfields. The Lessee (LACCD) would be responsible for the construction, operation, and maintenance of the playfields, and compliance with any lease terms. In addition, the Proposed Action would require the following:

- The ACOE would approve a modification to the existing SIBL access road easement to allow for roadway realignment.
- The ACOE would issue a Clean Water Act Section 404 permit for placement of revetment to stabilize the bank along the Pacoima Wash (see Appendix E).
- The US Fish and Wildlife Service (USFWS) would issue a Biological Opinion that would describe the measures necessary to be taken to protect endangered species.
- The ACOE would review and approve project plans and engineering specifications.

1.1.2 Description of the Project

The proposed ACOE Property development site is located on the west side of Pacoima Wash. The site is north of and adjacent to the Health, Fitness, & Athletics Building now under construction on the existing LAMC East Campus. Developing the Athletic Fields in close proximity to LAMC’s Health Fitness & Athletics Building would provide safe and direct access between the Athletic Fields and the College’s educational buildings on the East Campus via a designated pedestrian crosswalk.

The proposed Athletic Fields would conform to National Collegiate Athletic Association (NCAA) standards. A variety of options exist to layout the proposed fields. Examples of how the proposed project site may be developed are shown in Figures 1-1a Example Layout of Baseball Field and 1-1b Example Layout of Soccer and Softball Fields. The figures show example layouts for various types of fields. During final design, these layouts and orientations may change. In addition to use as ballfields, the parcel would be used for other athletic activities such as physical education and exercise by LAMC students.

Elevations of structures proposed at the site are included in Figure 1-2 Elevation of Proposed Athletic Field Structures. The elevations illustrate the single-story concession (“snackbar”), storage, and restroom structures, overhead solar panel structures in the parking lot, a dugout, sound system, and chain-link fence.

The proposed Athletic Fields would be accessed from the unpaved road that now serves the Sylmar Independent Baseball League (SIBL) off Maclay Street. In order to accommodate the proposed development, this access road would be widened and realigned along the east side of the site. To protect the proposed development and roadway, the west bank of Pacoima Wash would be stabilized. Where needed, existing material along the 20-foot wide bank would be replaced with rock rip rap layered to prevent erosion of the site terrain and sliding of the road into the Pacoima Wash.
1.0 Project Description

Figure 1-1a Example Layout of Baseball Field
Figure 1-1b Example Layout of Soccer and Softball Fields
Figure 1-2 Elevation of Proposed Athletic Field Structures
1.0 Project Description

Planned site amenities for the proposed Athletic Fields include press boxes, batting cages, bull pens, and a walking path with fitness stations (parcourse). Scoreboards, state-of-the-art field and parking lighting systems with carefully directed and shielded lights to minimize off-field lighting, and amplified sound systems would be incorporated into the proposed development.

The soccer field would have nets at either end of the field. The softball field would have two associated batting cages and bull pens (one set for the visiting team and one set for the home team). The baseball field would have 6 batting cages and 4 bullpens (split between the visiting and home teams). Support facilities would include a concession (“snackbar”) stand, men’s and women’s restrooms, and storage contained in a one-level building of approximately 1,100 gsf. Surface parking lot(s), potentially with solar panel canopies, would be designed to withstand flooding and wind. Water (domestic, fire, and irrigation), sanitary sewer, storm drain, electricity and telecommunications utilities would be installed to serve the site. Waste and recycling bins would be placed at the site and periodically emptied. Security and surveillance measures would be implemented to protect the fields and comply with local and College standards. To enhance scientific and educational values related to use of the site (see Section 3.20), a viewpoint and educational markers are planned to educate visitors regarding the biological resources in the area.

The site’s drainage system would consist of storm drain structures, including inlets, outlets and catch basins, and surface conveyance improvements, including gutters and swales, which will discharge the storm water to the Pacoima Wash basin east of the roadway. Roof drainage would be conveyed and collected by building downspouts connected to the storm drain system. To reduce the amount of piping within the site, storm water may be collected and conveyed through vegetated swales. Vegetated swales would be planted with appropriate grasses and plants, erosion resistant and tolerant of periodic flooding. The system would be designed and sized to convey the 25-year storm, as required by the Los Angeles County Hydrology Manual.

1.1.3 Habitat Protection and Enhancements

Functional buffers are planned along the northern and southern boundaries of the vegetated drainage located between the ACOE Property and the proposed Athletic Fields north of the site to insulate special status species and their habitats from potential noise, light and athletic field activities (see Figure 1-3). The functional buffers being proposed have been intentionally engineered to minimize impacts on birds that may nest within or near the drainage while at the same time taking into account practical issues of construction feasibility and operational practicality.

The vegetated drainage area is approximately 200 feet in width and contains a willow riparian scrub plant community, which has historically been and is currently occupied by least Bell’s vireo, a federally-listed endangered species. As part of the project’s design to avoid and minimize adverse impacts to special status species such as least Bell’s vireo, the vegetated drainage area would also be enhanced with native plantings and non-native and noxious species would be removed.

The functional buffer would consist of poles, a cable and fabric fence. This structure would be located along the parcel lines outside of the vegetated drainage. Poles would be constructed at about 30- to 60-foot intervals to support the cable and fabric fence. The height of this buffer would be approximately 35 feet, which is the approximate height of the existing riparian vegetation within the drainage area. It is anticipated that this cable and fabric fence would be in place during the typical avian nesting season.
1.0 Project Description

As a complement to the functional buffer, native riparian plantings, and weed removal activities, a naturally vegetated buffer is proposed in uplands adjacent to the drainage to help segregate plant communities and provide riparian dependent avian species with an insulated breeding habitat. These native perimeter plantings can also be utilized by wildlife as refuge habitat and a disturbance buffer between the local urban wildlife populations and LAMC visitors.

The upland shrub component adjacent to the riparian habitat would include perimeter vegetation plantings (e.g., California wild rose and Pacific blackberry bushes). When established, these plantings would also serve as an impenetrable band of stiff branched and thorny shrubs/vines to protect the area and would assist with sediment and debris control. Perimeter vegetation plantings would be completed with coastal sage scrub species as the habitat transitions away from the drainage.

1.1.4 Construction

Strict compliance with resource avoidance and monitoring would be employed during all phases of project construction. Up to 50 construction workers would be working per day. It is anticipated that about 6,300 cubic yards of soil would be removed from the site and 16,000 cubic yards of fill would be added. There would also be about 1,600 cubic yards of 500 pound rock brought onto the ACOE site for embankment support. Up to 5 truck trips per hour would carry an average of 15 to 17 cubic yards of soil per truck. Construction of the Athletic Fields is expected to commence in January 2010 and end September 2010. Grading of the site would occur from January 2010 to April 2010 and would not last more than 45 days. Typical workers’ hours would be 7 a.m. to 4 p.m. Trucks would be limited to operation between 9:30 a.m. and 3:30 p.m.

The anticipated order of construction would be: 1) rough grading/utilities and infrastructure, 2) finished grading, 3) structures/parking lot/solar panel foundations and 4) fields/landscaping/solar panel installation. Prior to the start of construction, the construction site would be clearly defined with construction limit fencing and staking. Typical construction steps include site clearance and demolition and removal as applicable, rough grading, site preparation, finish grading, installation of utilities and foundations, structural development, irrigation lines, paving and surface work, and landscaping. Typical construction equipment would include excavators, backhoes, skip loaders, dump trucks, bottom dumps, bob cats, hydraulic hammers, roll-off bins, cranes, pick-up trucks, concrete ready-mix trucks, delivery vehicles, paving machines, and assorted power operated hand tools. The proposed parking lots would typically serve as the construction staging area. Equipment would access the wash at the low point on the site (see Appendix E, Figure E-1). Construction workers would be expected to park on-site. They would not use street parking within the adjacent residential streets or parking at the El Cariso Regional Park and Golf Course. A construction parking phasing plan will be provided within the Construction Traffic and Parking Management Plan to assure that adequate parking for campus operations remain available during construction.
1.0 Project Description

Figure 1-3 Habitat Protection and Fencing
1.1.5 Operations

The Athletic Fields may be used for baseball, softball, or soccer, depending upon the optimum configuration determined during the design phase. Activities during operation include field preparation, games and practices, cleanup, and on-going maintenance of the facilities and grounds. The fields are intended for use by LAMC students and their athletic opponents. Field lighting and amplified sounds systems would operate only within current normal practice and game schedule hours. The lighting system would primarily be used in the evenings to complete afternoon games, and an occasional night game. However, the College may use the fields at any time during the evenings, so lights may be on until 10 p.m. on any day.

A parking program would accommodate 150-200 newly approved parking stalls on the combined ACOE and LACCD Athletic Field sites. This parking is in addition to parking stalls that would be added by the College in nearby areas under the proposed LAMC 2009 Facilities Master Plan.

LAMC’s existing Transit Program encourages student and employee use of existing rail and transit opportunities and the College intends to encourage the use of the Transit Program to access the proposed Athletic Fields. The Transit Program includes discounts to students and employees on monthly passes for travel on public transportation. The proposed Athletic Fields would be accessible to students using transit via the existing bus stop at the corner of Hubbard Street and Eldridge Avenue and the proposed bus stop at the LAMC East Campus entrance on the corner of Harding Street and Eldridge Avenue. The existing bus stop improvements and the new East Campus bus stop are intended to expand transit facilities and provide a more convenient and comfortable user environment to encourage students to use transit to reach the College and the Athletic Fields. The proposed project would comply with the LACCD Sustainable Building Policy by incorporating energy efficiency, demand side energy management, and on-site renewable energy generation features.

1.1.6 Relationship with other LAMC Projects

The proposed project forms part of a larger development proposed by the College in the LAMC 2009 Facilities Master Plan. LAMC also plans to develop fields in the parcel north of the proposed ACOE project site. An example layout of fields on the two sites is shown in Figure 1-4. The size of the northern parcel is approximately 6.4 acres, and is owned by LACCD.

1.1.7 Source of Funding

Proposition J, approved by voters in November 2008 authorized the District to issue $3.5 billion in general obligation bonds. Mission College received approximately $250 million to fund a number of projects including approximately $25 million to fund the proposed Athletic Fields.

1.2 Purpose and Need

1.2.1 Purpose of the Proposed Action

The purpose of the Proposed Action is to ensure the “efficient and economical use” of Federal Land by processing LAMC’s request in a timely manner, identifying whether the request is consistent with the Lopez Dam Master Plan; Federal laws, regulations, and policies; determine whether development of this kind is desirable to the Federal Government and/or to the public; and

1 LAMC, Personal communication with Nitin P. Bandi, Program Controls Manager, on June 4, 2009.
identify any conditions or restrictions that would be necessary for safe operation and maintenance of the parcels. Erosion in the eastern portion caused by floodwaters from the Pacoima Wash must be addressed.

LAMC’s primary objectives include: the acquisition of real estate interest that permits development, operation, and maintenance of ballfields with and within a walkable distance (typically a ¼ mile) to the Health, Fitness, and Athletics Building that are fully controlled by the College, and meet the National Collegiate Athletic Association (NCAA) standard competition regulations.

1.2.2 Need

LAMC has submitted a request to lease ACOE property for the recreational purposes. ACOE has identified that the parcels identified may be available for a compatible recreational use. The growing health, fitness, and athletic programs at LAMC have a critical unmet need for outdoor fields for educational purposes and sports competition for its students. LAMC needs dedicated athletic fields for student athletes and competitive sports programming. In addition, LAMC officials have projected that future student enrollment shall exceed the facilities’ current capacity. LAMC’s continuing enrollment growth and expansion of educational program offerings command the need for outdoor athletic facilities and open spaces for instruction, as well as athletic competition.

LAMC does not currently own or lease a soccer field in close proximity to the LAMC Main or East Campuses. In general, soccer fields are scarce in the area of the College. For the past seven years the LAMC soccer teams (both men and women) competed at Birmingham High School located approximately 15 miles from the College. The facility was able to meet minimal needs of the athletics program to provide a collegiate experience for student athletes and opposing college teams at a reasonable cost. In 2009 the LAMC soccer teams practice and play at the Hansen Dam soccer complex. This is a heavily used facility, and in the best of cases not suited for intercollegiate competition. One purpose of the proposed project is to replace the need for traveling to these remote facilities.

The College currently leases baseball and softball facilities at El Cariso Park. It is becoming increasingly difficult for LAMC to reserve and schedule athletic fields at remote locations on an ad-hoc basis, as the regional demand for these types of facilities increases with growth. Under the current agreement with the County, the College pays for each hour that it utilizes the fields, which includes all time required for practice and games. The College is also charged for time spent to upgrade and improve the facilities in order to meet the minimal practice and competition standards of a NCAA-level athletics program. Since the fields are used by many outside teams beside the college (e.g., the baseball field is used every night of the week and 3 games are played on Sundays) maintenance time, money and effort that the College invests into the County fields is diminished by outside teams that do not need to maintain the fields to NCAA standards. A second purpose of the proposed project is to provide convenient access to fields that meet these standards.
Figure 1-4 Athletic Fields Proposed in LAMC 2009 Facilities Master Plan
Blank Page for Back of Figure
With Los Angeles Mission College’s continuing expansion of health, physical education and fitness programs, comes an increasing need for outdoor athletic facilities and open spaces for instruction and athletic competition. Students and community members who utilize the Health, Fitness, and Athletics Building, adjacent to the Athletic Fields have the need for a complementary, open, outdoor green spaces near the building. LACCD owns property adjacent to the ACOE Property that needs to be put to use and can be consolidated and developed with athletic fields in collaboration with the ACOE Property. LAMC needs safe, direct access for students and staff traveling between LAMC educational buildings and athletic fields. The current circumstances require that LAMC users expend significant time and expense commuting to athletic fields in remote locations.

1.3 Background Information

Sections 1.1.1 through 1.1.3 describe background information of the proposed project, which includes a discussion of the project’s general location and boundaries, a description of the Athletic Fields site, and a description of the College’s existing 2007 and proposed 2009 Facilities Master Plan. Section 4 of the Flood Control Act of 1944, as amended (16 U.S.C. 460d), authorizes the U.S. Army Corps of Engineers “…to construct, maintain, and operate public park and recreational facilities at water resource development projects under the control of the Secretary of the Army, and to permit the construction, maintenance, and operation of such facilities.”

1.3.1 Project Location and Boundaries

The project site is situated in the San Fernando Valley, located just south and west of the Angeles National Forest, and approximately 20 miles northwest of downtown Los Angeles (Figure 1-5 Regional Location Map). Regional access to the site is provided via the Interstate 210 (Foothill) Freeway, located approximately one mile southwest of the Athletic Fields site.

1.3.2 Project Site

The project site is located north of the intersection of Harding Street and Maclay Street, directly across from the LAMC East Campus in Sylmar, CA and approximately one-third mile east of the LAMC Main Campus. The site is bordered by a riparian area to the north, located between the El Cariso Regional County Park recreational area and Pacoima Wash. The site is bound by Pacoima Wash to the east, the intersection of Harding Street and Maclay Street to the south, El Cariso Golf Course to the west, and by a riparian drainage area to the north. The site is is approximately 8.2 acres in size. To the north of the riparian area, LACCD plans to develop a parcel, which is approximately 6.4 acres in size, for similar purposes.

As shown on Figure 1-6 Existing Land Use and Zoning Map, the site lies within a predominantly single-family, low-density residential area, with parks, a golf course, schools, churches, and neighborhood commercial businesses. Two highly utilized regional County-operated recreation areas are located immediately to the west of the Athletic Fields site: the El Cariso County Golf Course and El Cariso Community Regional County Park. The fields operated by the SIBL are located to the north of the adjacent LACCD parcel. Mountain Glen Terrace and Santiago Estates residential communities are located to the east of the Athletic Fields site across Pacoima Wash. The Angeles National Forest is located approximately one mile north and east of the Athletic Fields site.

The site is located on gently sloping land which is approximately 35 feet lower than El Cariso Community Regional County Park and the LAMC Main Campus (refer to Figure 1-7 Topography Map). The site exhibits non-native grassland, sagebrush scrub, and southern willow scrub, with a
1.0 Project Description

riparian habitat feature that borders the ACOE parcel. The ACOE parcel is highly disturbed; the undisturbed portions are dominated by scale broom and sage-brush buckwheat scrub.

Existing utilities serving the proposed project area, such as irrigation, storm drain, sewer, water, and electrical lines are shown in Figure 1-8 Existing Utilities.

1.3.3 ACOE Lopez Dam Basin Master Plan

The ACOE’s Lopez Dam Basin Master Plan designates the ACOE Property for recreational uses (refer to Figure 1-9 Proposed Land Use Classification). The property is located within Planning Area 1 of the plan, which calls for intensive recreation with potential for high-impact recreation (refer to Figure 1-10 Proposed Resource Uses).

1.3.4 LAMC 2007 Facilities Master Plan

LACCD requires the preparation of facility master plans to support expansion of each of its nine colleges. Development of Athletic Fields along Pacoima Wash, which are the subject of this EA, was not a part of the 2007 LAMC Facilities Master Plan.

1.3.5 LAMC’s Proposed 2009 Facilities Master Plan

LAMC is proposing revisions to its 2007 Facilities Master Plan. The College’s 2009 Facilities Master Plan proposes to incorporate three new areas shown on Figure 1-11 Proposed 2009 Facilities Master Plan, identified as: the proposed Athletic Fields, the Hubbard Street Nursery Property, and Eldridge Avenue Streetscape Improvements.

1.3.5.1 Anticipated Enrollment and Attendance

In order to present a conservative worse case scenario for analysis, this EA assumes approximately 15,000 students would be enrolled and approximately 1,100 faculty and staff would be employed by 2015, consistent with both the 2007 and 2009 Facilities Master Plan projections. Future enrollment growth (participation rate) is dependent upon a number of key factors such as demographic characteristics, business and industry needs; the availability of State funding for universities; the College’s academic programs, course scheduling, and availability of adequate campus facilities.

Consistent with the 2007 Facilities Master Plan and carried forward under the 2009 Facilities Master Plan, the College plans to partially accommodate its enrollment growth and related Campus attendance through course scheduling and distance learning to ensure the campus facilities are adequate to serve identified student and employee estimates. Estimated campus population is anticipated to be:

- 7:00 a.m. to 3:59 p.m.—total campus population would not exceed 5,400 (approximately 4,700 students and approximately 700 employees)
- 4:00 p.m. to 10:00 p.m.—total campus population would not exceed 3,300 (3,000 students and 300 employees)
- Weekends—900 students and 200 employees
Figure 1-5 Regional Location Map
Blank Page for Back of Figure
1.0 Project Description

Figure 1-6 Existing Land Use and Zoning Map
Blank Page for Back of Figure
Figure 1-7 Topography Map
1.0 Project Description

Blank Page for Back of Figure
Figure 1-8 Existing Utilities
1.0 Project Description

Blank Page for Back of Figure
Figure 1-9 Proposed Land Use Classification
Blank Page for Back of Figure
1.0 Project Description

Figure 1-10 Proposed Resource Uses
Figure 1-11 Proposed 2009 Facilities Master Plan
Blank Page for Back of Figure
1.4 Procedures to Protect Pacoima Reservoir

The Department of the Army Corps of Engineers South Pacific Division (SPD) SPD Regulation 1110-2-1, Land Development Proposals at Corps Reservoirs Projects, establishes policy and procedures that districts must use to evaluate land development proposals under consideration within ACOE reservoirs or flood basins within the SPD. According to the regulation, the Los Angeles District of the ACOE has responsibility to assure that the project complies with the ACOE master plan, that the project purposes are not compromised, that the public is not endangered, and that natural and cultural resources associated with project lands are not harmed. Procedures outlined in the regulation will be used by the Los Angeles District of the ACOE to evaluate the development of the proposed project in order to meet responsibilities of the District and to comply with applicable laws and directives. The ACOE will use the following factors, discussed in detail in Sections 1.3.1 through 1.3.11 to evaluate the land development proposal for the proposed project:

- Real Estate Requirements
- Reservoir Storage
- Flood Damage to Property
- Flood Damage to Reservoir (Floatables, Release of Pollutants, Debris build up and Cleanup within the Flood Control Basin)
- Existing and Planned Project Use
- Induced Constraints to System Flexibility
- Constraints to Future System Flexibility
- Public Safety
- Environmental Stewardship
- Contingency Plan
- Reporting

1.4.1 Real Estate Requirements

ACOE will review the project to ensure that the proposed project satisfies all real estate requirements. In compliance with SPD Regulation 1110-2-1, the ACOE will evaluate the proposed project to ensure that it does not conflict with the terms of real estate interests held for the ACOE lands or constrain future operational flexibility on the ACOE Property. As required, a lease application was submitted to the ACOE Los Angeles District on March 13, 2009 and has undergone preliminary review. Through the application, the College has requested a 25-year term lease with a 25-year renewable term option for development and use of ACOE Property along the west side of the Pacoima Wash. The Lessee (LACCD) would be responsible for the construction, operation, and maintenance of the playfields, and compliance with any lease terms. Provisions under the ACOE outgrant will include recognition that the water control plan is expected to change in the future and

that flood releases are based on the more current water control plan. Before making a final
determination on the proposed project, the Office of Council will be consulted.

1.4.2 Reservoir Storage

The proposed project would maintain Pacoima Reservoir’s project storage space including the space
for the Spillway Design Flood (SDF). When considering excavations or landfill placements, the
ACOE is required to evaluate the “project storage capacity” which is defined as the hydrologic and
hydraulic needs of the project (which encompasses the volume for the entire project i.e.,
sedimentation, hydropower, recreation, agriculture, water supply and spillway design flood). The cut
and fill operations associated with the project that would change the original topography of the
project area are discussed in Section 1.2.1.2 Construction. The change in topography vertical space
within the reservoir would not adversely affect flood control capacity or flooding frequency within
the flood control basin because the elevation of the proposed project is located above the Pacoima
Reservoir’s spillway surcharge elevation. For this reason, development of the site would not result in
any property to be flooded more frequently than before the development took place. The project
would not require any excavation or grading that could result in a loss of project storage, and
therefore, substitute flood storage would not be required for project development. Furthermore, the
project would have minimal impact above the spillway plus surcharge elevation, since the proposed
development would be primarily open space. The Proposed Action would not affect existing natural
drainage patterns. Runoff will be controlled through a Standard Urban Stormwater Mitigation Plan
(SUSMP) and planting of native vegetation.

1.4.3 Flood Damage to Property

The proposed project includes measures to minimize potential for flood damage to property. In
compliance with SPD Regulation 1110-2-1, the proposed development would be designed such that
it can withstand period flooding without major damage. Buildings that contain utilities, records,
and/or equipment would either be flood proofed or would have contingency plans developed for
evacuation of moveable items before the flood. Project-specific development designs will be
prepared prior to project approval and submitted to the ACOE for review. The designs will provide
the protection necessary for reducing recurring flood impacts to the site to a manageable level.

As part of the Proposed Action, bank improvements will be constructed. The primary purpose of
the bank protection is to protect the roadway that connects Harding Street to the ACOE Property,
the LACCD property north of the ACOE Property, and the SIBL fields north of the college
property. This roadway runs along the eastern edge of these properties. In early January 2005, two
segments of the roadway eroded away due to the winter’s heavy rains. One washout, the “South
Washout,” occurred near Harding Street. The other, the “North Washout,” occurred further north
along the roadway at the confluence of the tributary drainage from the golf course (from the
northwest) and the Pacoima Wash (see Figure 1-12 North and South Washouts), which is the
location that divides the ACOE and LACCD properties. Shortly after the washouts occurred, a
temporary roadway was constructed west of the original roadway to allow access to the SIBL fields.
According to a geotechnical study that was prepared regarding this event, the two washouts
consisted solely of erosion of the access road embankment attributed to the large quantities of fast-
moving water in the Pacoima Wash. The large, swift flows scoured out the two segments. There was
no visible evidence of bank instability resulting from slope instability or rapid drawdown failures.
Figure 1-12 North and South Washouts
1.0 Project Description

The South Washout appeared to be due to a combination of inadequate embankment armoring and a westward bend in the wash that directed flows into the embankment. Although the North Washout area was protected on its west bank by a concrete surface, the surface appeared to be undermined below the surface. Stabilization of the existing bank is necessary in order to ensure safe access along this roadway.

1.4.4 Flood Damage to Reservoir

In order to reduce potential flood damage to the reservoir, the project would be designed to minimize floatables, release of pollutants, and buildup of debris.

1.4.4.1 Floatables

A floatable object, such as storage tanks, vehicles, or any other article that can float, can become dislodged due to buoyancy and/or swift currents. Floatables could cause substantial damage to structures or property downstream as well as alter the ability of the flood control facility. To prevent this, each item on the proposed development area would be adequately anchored to prevent it from being dislodged in the event of a flood. The proposed project will comply with development requirements for ACOE inundation flood elevations. Project design will include floodable restrooms, floodable structures, and field improvements that can sustain inundation.

1.4.4.2 Release of Pollutants

The ACOE is responsible for water quality of the water stored and released from the reservoirs. The proposed development would be designed so the potential for leakage or accidental discharge into the flood waters of pollutants would be minimized so adverse environmental impacts to downstream users would not occur. Hazardous materials that may be used during construction and/or operation and maintenance of the proposed project could include paints, thinners, solvents, sealants, and lubricants. The quantities (a few gallons) and concentrations of these hazardous substances are not expected to reach regulated levels. Any such materials would be kept in secure locations during construction and operations of the Project. Construction staging locations are shown in Appendix E. A few quarts of oil may be stored for maintenance equipment during operations in the storage buildings located adjacent to the fields. Most of the fuel required by construction and operation vehicles and engines will be procured at commercial gas stations in the local area. If necessary, petroleum fuels may be stored in the staging areas to fuel project vehicles. These fuels would be stored in areas with secondary containment to contain any potential spilled material.

All waste generated during construction would be stored in wind- and wildlife-proof containers that would be periodically transported to an offsite disposal facility authorized to accept the waste. The proposed project would comply with regional water quality design requirements. The proposed project would comply with National Pollutant Discharge Elimination System (NPDES) requirements defined in the Storm Water Pollution Prevention Plan (SWPPP) and Water Quality Management Plan (WQMP) to reduce pollutant discharge into the reservoir below.

1.4.4.3 Debris Build-up and Clean-up within the Flood Control Basin

The development would be designed to minimize affecting the natural flow of sediment into the reservoir. Use of vegetation along the perimeter and bank stabilization would help reduce the potential for larger quantities of sediment and/or debris to deposit in the reservoir where it had not
1.0 Project Description

been anticipated. NPDES requirements, and portions of the SWPPP and WQMP, would be implemented to reduce soil erosion and sedimentation.

1.4.5 Existing and Planned Project Use

As required by SPD Regulation 1110-2-1, in this EA the proposed development has been reviewed for consistency with the appropriate ACOE master plan to assure that it would not conflict with existing or planned uses. The proposed project is located within the Lopez Dam Basin Master Plan area. The Master Plan designates the proposed property for recreational uses. The ACOE has determined that the proposed development is for recreation which is in compliance with the Lopez Dam Flood Control Basin Master Plan and that the ACOE is authorized under 16 U.S.C. § 460d and 10 U.S.C. § 2667 to issue a recreational lease for the proposed project.3

1.4.6 Induced Constraints to System Flexibility

The proposed project would maintain system flexibility. The project would not affect the Lopez Dam Basin’s need for operational flexibility in order to deal with forecast errors, operational inefficiencies, and delays in meeting operational objectives, emergencies, and unique situations in order to provide flood protection to downstream areas. The proposed project is not expected to adversely affect the system operations of the reservoir project because it is located at a higher elevation than the maximum spillway elevation, and would not reduce reservoir capacity.

1.4.7 Constraints to Future System Flexibility

The proposed project would maintain future system flexibility. Because it would not affect reservoir capacity, the project would not affect the ability of the Lopez Dam reservoir project to provide the degree of protection for which it was originally designed. While the project would stabilize the existing west bank of the Pacoima Wash, no future changes in the watershed are expected. No new hydrologic data have been obtained that would change the current long-term plans. No changes in technology, operational experience, downstream conditions, or other factors would be introduced by the proposed project. The proposed project would not cause inappropriate reservoir development or adversely affect the future flexibility of the overall river system.

1.4.8 Public Safety

The proposed project would maintain, and potentially improve, public safety. According to SPD Regulation 1110-2-1, facilities that can hold a large number of people might cause concern for public safety. Concern for public safety could attribute added liability to the ACOE, which could add risks and potential delays to water management decisions. For this reason the proposed project has been evaluated for adverse and unexpected impacts to public safety (refer to Section 3.16, Safety and Health).

Currently, the property proposed for use as LAMC Athletic Fields are used by local community members for passive recreational uses such as walking, mountain bike riding, and other outdoor activities. These parcels do not contain any developed active recreational facilities by the City, County, or ACOE. Upon commencement of construction, access by local community members to the ACOE Property would be restricted, however use of the site for athletic programs associated

with the College would likely increase the total number of persons using the site on a regular basis. The proposed Athletic Fields would reduce passive recreation at the ACOE Property. A reduction of current unauthorized, unmonitored use of the site could reduce the ACOE’s current liability. While the proposed development could result in a net increase in the number of people within the floodable area during supervised athletic events, the fields would not usually be occupied during rainy, flood-prone conditions. An emergency evacuation plan developed by the College would minimize the risk to the public during floods.

Other risks associated with the project could include the attraction of trespassers who might utilize the Athletic Fields during after hours as a play area or transients using the site as a sleeping area. With proper design, fencing, and security patrolling that would be introduced by the proposed project, these risks are not expected to be increased by development of the proposed project.

1.4.9 Environmental Stewardship

Development of the parcel will incorporate features that promote environmental stewardship of the land. This EA, which has been prepared in accordance with NEPA, evaluates the potential environmental effects of the Proposed Action and identifies measures to reduce adverse effects. The proposed project would also incorporate measures needed to comply with the ACOE’s Clean Water Act Section 404 permit, which is required by LACCD before it can place stabilizing revetments along the bank of the Pacoima Wash. Since certain sensitive species have been observed at the site, the LACCD will also implement measures required by the USFWS in its forthcoming Biological Opinion pursuant to Section 7 of the Endangered Species Act. Several features have been incorporated into the Proposed Action to minimize potential environmental impacts. These features include:

- Preserving the existing 200-ft-wide east-west flood control easement that drains runoff from the Los Angeles County property, traverses the LACCD and ACOE parcels, and empties into Pacoima Wash. Preserving this easement would minimize impacts to drainage and riparian habitat in this area, including southern willow scrub habitat utilized by the listed least Bell’s vireo.

- Maintaining or improving the existing access road from Harding Street to Sylmar Independent Baseball League (SIBL) athletic fields north of the LACCD property.

- Avoiding effects on jurisdictional waters of the U.S., wetlands, and riparian habitat, wherever possible.

- Adding native vegetation along the stabilized bank, and elsewhere on-site and off-site as needed to preserve and enhance aquatic resources.

- Raising buildings to four feet above existing grade, and designing structures according to “floodable” design criteria to reduce construction and post-construction surface hydrology and water-quality impacts.

Designing shielded ball field lighting to limit light/glow impacts to the surrounding residential neighborhoods.

1.4.10 Contingency Plan

In accordance with SPD Regulation 1110-2-1, a contingency plan will be prepared for the proposed project. The plan will consider the scope of emergencies that could arise within a flood control basin.
and will determine what contingency measures are required to deal with them. It will be the sole responsibility of the College to evacuate the area in the event of an emergency or flood event. The plan will include standard operating procedures for: regular patrols of the area (if warranted); warning systems, their triggering mechanisms, their thresholds and minimum warning times based on the hydrology of the watershed; mobilization of equipment and manpower for evacuation of humans, animals, and/or records, utilities and equipment; emergency notifications (phone number and personnel lists); access roads and escape routes; and clean-up and repair.

1.4.11 Reporting

The evaluation of the proposed project will be documented by the ACOE. The documentation will consist of a report that explains what factors are evaluated and what the results of the evaluations were. The completed evaluation package, including the proposal and environmental documentation will be submitted to the ACOE for review to insure national and regional consistency in policy applications prior to approval by the Los Angeles District Commander.
2.0 ALTERNATIVES

In accordance with the Center of Environmental Quality (CEQ) Regulations, the National Environmental Policy Act (NEPA), 42 U.S.C. 4321 et seq., requires all federal agencies to conduct an Environmental Assessment (EA) to determine if the Proposed Action would result in significant effect on the environment. A finding of no significant impact (FONSI) is issued as a result of the EA if the agency finds that the Proposed Action would have no significant environmental impact.

NEPA and CEQ regulations require an agency to identify alternatives to the Proposed Action, the direct impacts of each alternative, including the Proposed Action, the indirect effects, and the cumulative effects of the Proposed Action with other nearby or similar actions. An EA need not evaluate all alternatives proposed by the public, community groups, and affected interests, but needs to evaluate a reasonable range of alternatives that can attain the Proposed Action’s purpose and need as described under Section 1.4.

In the screening process, first a list of alternatives to the proposed project was developed. Screening criteria were used to determine whether or not each of the alternatives was reasonable and should be considered further. These criteria included cost, technology, logistics, and environmental, historical, and socioeconomic impacts. Some alternatives were eliminated from further consideration because they would not meet the screening criteria. These alternatives are summarized in Section 2.1.

2.1 Alternatives Considered and Not Carried Forward for Analysis

Some alternatives were considered but eliminated from detailed evaluation in this EA because of their infeasibility to meet the proposed project’s purpose and need or failure to attain benefits greater than the Proposed Action. Alternatives that were considered but rejected include:

Other Sites Near LAMC

- Land between Eldridge and Gladstone. The use of vacant lands between Eldridge and Gladstone for the Athletic Fields would involve opening a new campus area that would not be consolidated with the existing campuses. The use of this land would create additional traffic and noise concerns for the surrounding community since there would be no buffer between the fields and the existing neighborhood. Furthermore, the vacant parcels located in this area would not be large enough to provide space for Athletic Fields and related amenities without acquisition of parcels containing structures. For these reasons, this alternative is infeasible in meeting the project purpose and need.

- El Cariso Park Ballfields. This alternative would not be feasible since the park does not have soccer fields to meet the needs of LAMC athletes and would therefore not meet the purpose and need of providing conveniently located fields for use by LAMC students as remote soccer facilities would still have to be used.

- El Cariso Golf Course. This alternative would not be feasible because this public open space and recreation amenity is currently available to the community. Conversion of this space to Campus Athletic Fields, although keeping it in an open space type character, precludes generally public recreation. Previous attempts to use this alternative were highly controversial, were rejected by the community and political leaders, and were found to be institutionally infeasible to implement.
2.0 Alternatives

Sites within 10 Miles from LAMC

- Fields Located Elsewhere in the Region. Figure 2-1 shows the results of a survey of vacant parcels with a size of 6 acres or more within a 10 mile radius of LAMC. The figure shows that the closest such parcel is at least 2.5 miles from LAMC. The vacant parcels in the area shown to the northwest of LAMC and adjacent to the I-210 and I-5 freeways are located in hilly and/or vegetated riparian canyon areas. Since athletic fields require flat surfaces, such locations would be expensive to grade to the level required for use. Vacant parcels shown to the southeast of LAMC include parcels located within and adjacent to Little Tujunga Wash and Big Tujunga Wash. The issues associated with constructing fields in these locations would be similar to those for the proposed project, but they would be 4 to 10 miles from LAMC. Since these sites would have no advantage to the proposed site, and would be much less convenient, they were not considered further.

- Other Developable Land Within the Lopez Dam Basin. Other ACOE lands within the basin were inventoried for possible development consistent with LAMC’s needs. This alternative is not viable because other ACOE lands within the Pacoima Wash area are not developable for the purpose of the project.

Sites farther than 10 Miles from LAMC

- Remote Fields. Fields in Pasadena, south of the 405 freeway, or at existing universities such as UCLA would not meet the purpose of providing conveniently accessible ballfields and parking for use by LAMC students, and would exacerbate existing problems related to athletic field availability, convenience, costs, and travel.

Alternative Development of the Site

- Ecological Preserve and Botanical Garden (“Passive Park”). This alternative has been proposed by one community member. This alternative would not be feasible for the ACOE Property, since the ACOE does not have plans, funding, or a mission to develop this property as a park for use by the general community. This alternative would also not meet the important objective of providing conveniently located ballfields for use by LAMC students.

- Alternative that Avoids Effects on Waters of the U.S. To avoid waters of the U.S., the bank stabilization portion of the project would be deleted and the site’s access road would be relocated to the western side of the site (see Appendix E). This alternative would not be feasible since the College would not proceed with the project if the adjacent bank is not stabilized with revetment to protect the athletic fields from potential scouring along the eastern property line. Potential loss of the athletic fields due to scouring would not meet the project purpose and need for a long term solution for these facilities. Furthermore, since a westerly roadway could not use the existing culvert across the riparian area, a new bridge would be required across sensitive habitat to maintain existing vehicular access to the Sylmar Independent Baseball League baseball fields. The new bridge would traverse an area that is known to be occupied by Least Bells Vireo. The new bridge would cause a direct take of this endangered species’ habitat and would therefore create more serious environmental effects than the proposed project. If waters of the U.S. in the riparian area are to be avoided, the new bridge would need to be of a large, costly, and intrusive scale. This alternative is described in more detail in Appendix E.
Figure 2-1 Vacant Lands within 10 miles of LAMC
2.0 Alternatives

Blank Page for Back of Figure
2.2 Alternatives Analyzed

An alternative to the proposed project that would partially meet LAMC’s objectives is to develop the LACCD parcel for use as athletic fields, and to leave the ACOE Property in its current condition. Since the No Action alternative must also be analyzed as required by NEPA, the alternatives to the Proposed Action that are carried forward in the analysis include:

- **Alternative 1. No Action (LAMC would not lease the ACOE Property and would not develop Athletic Fields at either the ACOE or the LACCD property. No 404 permit would be issued and no USFWS or other federal agency involvement would be necessary.)**

- **Alternative 2. Development of the LACCD Property Only (LAMC would develop the LACCD property for use as Athletic Fields, but would not develop athletic fields at the ACOE Property. Since the bank stabilization activities would be the same as for the Proposed Action, a 404 permit would be issued by the ACOE for bank stabilization, and USFWS would issue a Biological Opinion regarding effects on endangered species).**

For each of the alternatives selected for evaluation, the potential environmental consequences are analyzed in Section 3, and the merits and effects of each alternative are compared to the Proposed Action alternative in Section 4. A detailed description of each alternative is provided below.

2.2.1 Alternative 1 – No Action Alternative (No Lease of ACOE Property and No Development of Either ACOE or LACCD Properties)

The No Action alternative prescribed by CEQ regulations serves as a benchmark against which proposed federal actions are evaluated. The “no action” alternative assumes that the project would not be implemented and assesses the contribution of existing conditions upon the affected environment. Under this alternative, LAMC would not lease the 8.2 acres of land from ACOE Property. No development of the Athletic Fields would occur on the ACOE Property. The ACOE Property would remain its current passive recreational function and would be used for walking, mountain bike riding, and other outdoor activities. LAMC would also not develop the adjacent LACCD property. That property would also remain in its current state.

This alternative would have the following characteristics:

- The ACOE would take no action.
- Improvements or maintenance of roadways, revetments, and utilities on ACOE Property would not occur.
- Revetments or improvements to the Pacoima Wash bank would not occur.
- LAMC’s softball and baseball teams would continue to use fields at El Cariso Park and other locations and its soccer teams would continue to use fields at remote locations.
- Other improvements not related to Athletic Fields development as described under the LAMC 2009 Facilities Master Plan, including the Eldridge Avenue and Nursery Site development, would occur, but would require no action by the ACOE or other federal agency.
This alternative would differ from the Proposed Action alternative in the following ways:

- The existing roadway on ACOE Property would remain in its current condition.
- No development of the Athletic Fields would occur on the ACOE Property, since no lease or acquisition of the ACOE Property would occur.
- No temporary parking would be provided on ACOE Property for the Health, Fitness and Athletics Building, which would affect traffic and parking flows.
- Use and lease of County and other off-site athletic fields for baseball would continue.
- Passive recreational use of the ACOE Property would continue.
- Stabilization and reconstruction of the roadway within the ACOE jurisdiction would not occur.

2.2.2 Alternative 2 – Development of the LACCD Property Only

With this alternative, Athletic Fields would be developed on the LACCD property only. Under this alternative, LAMC would utilize the 6.4 acres of LACCD property for Athletic Fields development. No lease or development of the ACOE Property would occur. The Athletic Fields on the LACCD parcel would either be utilized as a softball and soccer field or a baseball field for the LAMC students. The ACOE would issue a 404 permit for bank stabilization and USFWS would issue a Biological Opinion regarding effects on endangered species.

This alternative would differ from existing conditions in the following ways:

- Athletic Fields would be constructed for use by the college on the LACCD parcel.
- Lighting, parking, and other ancillary structures would be constructed on the LACCD Athletic Fields.
- Reconstruction of roadways, revetments, and utilities would occur on LACCD property.
- Stabilization and reconstruction of roadways, revetments, and utilities on ACOE Property would be required, and would require ACOE approval.
- Change to current road configuration would result in alteration to the width, path, and design of the route through the ACOE Property.
- Either softball, baseball, or soccer fields would not need to be leased from County or other off-site fields.
- Other improvements described under the LAMC 2009 Facilities Master Plan, including the Eldridge Avenue and Nursery Site development, would occur.

This alternative would differ from the proposed project in the following ways:

- No development of Athletic Fields would occur on the ACOE Property. This alternative would reduce the overall availability and recreational benefits for the College since the development of Athletic Fields development would only occur on the 6.4 acres of LACCD property instead of the entire 14.6 acres of ACOE and LACCD parcels.
2.0 Alternatives

- No temporary parking would be provided on ACOE Property for the Health, Fitness and Athletics Building, which would affect traffic and parking flows. Reduction of parking would adversely affect the ability of the college to attract students to the Health and Fitness programs, and would reduce the functionality of the LACCD Field.

- Use and lease of County and other off-site baseball athletic fields would continue, and would reduce the ability of the College to schedule games, reducing the involvement of students in team sports, and reducing the attractiveness of the athletic program.

- Passive recreational use of the ACOE Property would continue. Biking, riding, and other outdoor activity on the ACOE Property would continue.
3.0 AFFECTED ENVIRONMENT, PROJECT SETTING, AND ENVIRONMENTAL IMPACTS

This chapter of the EA is subdivided by environmental resource area. Within each environmental resource area the analysis provides:

- A summary of the affected environment;
- A discussion of the impact assessment methodology;
- An analysis of the potential effects to environmental resources that may be generated by the proposed project, development of Athletic Fields on the ACOE Property;
- An analysis of the cumulative impacts of the proposed project in conjunction with other past, present, and reasonably foreseeable future projects in the area (refer to Section 7.6 for a list of the Past, Present, and Reasonably Foreseeable Future Actions near the Project site and a summary of the cumulative impact analysis approach); and
- An analysis of the potential effects to environmental resources that may be generated by project alternatives, as compared to the proposed project.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.1 Vegetation and Habitat

This section describes and evaluates on-site vegetation and habitat conditions within study area. In Sections 3.1 through 3.5, the term “study area” refers to the biological resources evaluated at the project site, the footprint where ground disturbance would occur, plus a 500-foot area beyond these locations to account for potential effects of construction and operation.

3.1.1 Affected Environment

The LAMC Athletic Fields are situated in the foothills of the San Gabriel Mountains and are located on the edge of a highly urbanized area (e.g., the San Fernando Valley). As such, they provide limited native scrub and “open space.” However, the Athletic Fields portion of the study area does extend into the Pacoima Wash. The Pacoima Wash is unique because it connects natural open space and undeveloped locales essential for the regional long-term viability of plants and habitat. The study area includes ten predominant vegetation communities/land types which were based on observed dominant vegetation composition and density. Vegetation classifications of plant communities and land types within the study area were derived from the criteria and definitions of Holland (1986) (Figure 3.1-1 Vegetation Communities – Athletic Fields). The project is not within or adjacent to any designated Significant Ecological Area (SEA). The nearest SEA is roughly three miles away—Tujunga Valley/Hansen Dam SEA.

3.1.2 Environmental Consequences

3.1.2.1 Methodology

The analysis described below is based on field survey of the study area conducted by URS from March through July of 2009. Prior to beginning a field survey, available information was reviewed from resource management plans and other relevant documents to determine the locations and types of biological resources that have the potential to exist within and adjacent to the study area.

The March 2009 California Natural Diversity Database (CNDDB), maintained by the California Department of Fish and Game (CDFG, 2009), and the California Native Plant Society (CNPS) Electronic Inventory of Rare and Endangered Plants of California (CNPS, 2009) were queried for records of occurrence of special-status species and habitats within the San Fernando USGS 7.5-minute quadrangle. Additional available information was reviewed from resource management plans and other documents containing information on resources within the vicinity (Burt & Grossenheider, 1980; CDFG & Western Field Ornithologists, 2008; Evans & Hogue, 2006; Garrett & Dunn, 1981; Hall, 1981; Hickman, 1993; Holland, 1986; Jennings & Hayes., 1994; Kirkpatrick & Hutchinson, 1977; Sawyer & Keeler-Wolf, 1995; Sherbrooke, 2003; Sibley, 2000; Soil Survey Staff, 2008; Stebbins, 2003; Stuart & Sawyer, 2001).

The field survey assessed general and dominant vegetation types, community sizes, habitat types, and species present within communities. Community types were based on observed dominant vegetation composition and density. Vegetation classifications of plant communities in the study area were derived from the criteria and definitions of Holland (1986) and Sawyer and Keeler-Wolf (1995).

4 Where access to the entire study area was not possible as a result of private property, topographic relief, or physical barriers, observations were made from nearest appropriate vantage points with binoculars or via aerial photographic interpretation.
Plants of uncertain identity were collected and subsequently identified from taxonomic keys (Hickman, 1993) and field guides (Stuart & Sawyer, 2001). Scientific and common species names were recorded according to The Jepson Manual: Higher Plants of California. A list of observed plant species is provided in Appendix A-1.

The study area was assessed in the field for its potential to support both common and special-status plants based on habitat suitability comparisons with reported occupied habitats. The following definitions of potential for occurrence were utilized to determine the need for subsequent focused surveys within the study area, and assess project-related effects:

- **Absent**: Species distribution is restricted by substantive habitat requirements, which do not occur within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.
- **Low**: Species distribution is restricted by substantive habitat requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.
- **Moderate**: Species distribution is restricted by substantive habitat requirements, which marginally or mostly occur within the study area, and further survey or study is necessary to determine likely presence or absence of species and assess project-related effects.
- **High**: Species distribution is restricted by substantive habitat requirements, which occur within the study area, and further survey or study is necessary to determine likely presence or absence of species and assess project-related effects.
- **Present**: Species or species sign were observed to be present in the study area.

In summation, where no specific species was identified by survey, there was no suitable habitat present for a particular special-status species within the study area, or only negligible suitable habitat was present, the species was considered to be Absent or to have a Low probability to occur. The Moderate and High categories resulted in a focused survey within the study area to determine if the species is present or absent in order to assess project related effects.

3.1.2.2 Proposed Action

Short-Term Impacts

Construction of the LAMC Athletic Fields would have an adverse impact on habitat as the result of the permanent removal of 8.2 acres of native habitat. Potential adverse effects from construction of the Athletic Fields to vegetation and habitat protected by local policies and ordinances (e.g., City of Los Angeles General Plan, Open Space Element of the City of Los Angeles Sylmar Community Plan, and the City of Los Angeles Municipal Code) would be minimized or avoided by providing instructions in contractor bid packages regarding areas to be protected, by fencing sensitive areas, and by posting signs advising construction workers of these areas.

Long-Term Impacts

Project implementation is not expected to conflict with any Habitat Conservation Plan, Natural Community Conservation Plan, or any other local, regional, or state habitat conservation plan. Adverse effects on vegetation or habitat from events on the athletic fields are not expected.
Figure 3.1-1 Vegetation Communities – Athletic Fields
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.1 Vegetation and Habitat

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.1 Vegetation and Habitat

Beneficial effects would occur from planting native vegetation along the bank of the Pacoima Wash as part of the bank stabilization program.

Impact Summary

Impacts on vegetation and habitat would not be significant because construction activities would be controlled and the project would not conflict with any habitat conservation plans or affect vegetation or habitat from athletic fields use.

Cumulative Impacts

Previous developments, including construction of the SIBL ballfields, have reduced native vegetation and habitat adjacent to Pacoima Wash. Impacts to vegetation from development of the LAMC East Campus is being mitigated by planting along the east side of the campus and the west bank of the Pacoima Wash. Development of the proposed project and the Athletic Fields on the LACCD parcel to the north of the project site would add to cumulative effects of past projects, and would be similarly mitigated. Due to the existing disturbance and associated infrastructure in the project vicinity, the non-native origin of the majority of the potentially affected communities within the area, and plans for mitigating adverse effects, cumulative adverse impacts to vegetation and habitat from this project in combination with other future projects would be minimal.

3.1.2.3 Development of LACCD Property Only

This alternative would result in similar impacts to vegetation and habitat as the Proposed Project alternative. The sparse vegetation on the ACOE Property would be left in place. Beneficial effects of planting native vegetation would be the same as those of the Proposed Project alternative.

3.1.2.4 No Action

This project alternative would not result in adverse or positive impacts to vegetation or habitat at the Athletic Fields sites. Since the No Project Alternative would not adversely impact trees, shrubs, or plants in the vicinity of the study area, no impacts to these resources are expected. Adverse impacts would be less than those of the Proposed Project alternative.
3.2 Wildlife

This section describes and evaluates on-site wildlife conditions and determines the potential for occurrence of common and special-status species within study area limits.

3.2.1 Affected Environment

The Pacoima Wash has the ability to function as a local wildlife movement corridor within Los Angeles County and enhance the value of open space and undisturbed habitats within the region. A literature review did not indicate that the study area is within any identified potential linkage areas (Penrod et al., 2004). Common wildlife species observed within the study area included commonly-occurring avian species as well as a few commonly-occurring mammals, reptiles, amphibians, and invertebrates (Appendix A).

Eight (8) special-status wildlife species are reported to occur within the San Fernando USGS 7.5-minute quadrangle surrounding the study area. Five (5) of these species are protected by the federal and/or state Endangered Species Act (ESA). Of the eight special-status wildlife species identified, three (3) were determined to have either a Moderate or High potential for occurrence designation (as detailed in Section 3.2.2.1 below) within the study area:

- *Aspidoscelis tigris stejnegeri* (coastal western whiptail) – is not a federally threatened species and occurs in a variety of habitats including valley-foot hill hardwood, valley-foot hill hardwood-conifer, valley-foot hill riparian, mixed conifer, pine-juniper, chamise-redshank chaparral, mixed chaparral, desert scrub, desert wash, alkali scrub, and annual grassland. Suitable habitat for this species is negligible within the study area, as a likely consequence of anthropogenic disturbances (dumping, public use, etc.).

- *Polioptila californica californica* (coastal California gnatcatcher) – is a federally threatened species and occurs in coastal sage scrub vegetation on mesas, arid hillsides, and in washes and nests almost exclusively in coastal sage scrub. The coastal sage scrub quality within the study area is marginal as a likely consequence of anthropogenic disturbances (dumping, public use, etc.).

- *Vireo bellii pusillus* (least Bell’s vireo) – a federally endangered species and resides in low riparian areas close to water or dry river beds. Their nests are usually constructed in bushes or within the branches of willows, mule fat, and mesquite. They are usually found below an elevation of 2,000 feet. Five (5) riparian areas that could support the least Bell’s vireo were identified within or adjacent to the study area.

3.2.2 Environmental Consequences

3.2.2.1 Methodology

The analysis described below is based on field survey of the study area conducted by URS from March through July 2009. Prior to beginning a field survey, available information was reviewed from resource management plans and other relevant documents to determine the locations and types of biological resources that have the potential to exist within and adjacent to the study area.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.2 Wildlife

The March 2009 California Natural Diversity Database (CNDDB) maintained by the California Department of Fish and Game (CDFG, 2009), and California Native Plant Society (CNPS) Electronic Inventory of Rare and Endangered Plants of California (CNPS, 2009) were also queried for records of occurrence of special-status species and habitats within the San Fernando USGS 7.5-minute quadrangle. Additional available information was reviewed from resource management plans and other documents containing information on resources within the vicinity (Burt & Grossenheider, 1980; CDFG & Western Field Ornithologists, 2008; Evans & Hogue, 2006; Garrett & Dunn, 1981; Hall, 1981; Hickman, 1993; Holland, 1986; Jennings & Hayes., 1994; Kirkpatrick & Hutchinson, 1977; Sawyer & Keeler-Wolf, 1995; Sherbrooke, 2003; Sibley, 2000; Soil Survey Staff, 2008; Stebbins, 2003; Stuart & Sawyer, 2001).

The presence of a wildlife species was based on direct observation, wildlife sign (e.g., tracks, burrows, nests, scat), or vocalization. Field data compiled for wildlife included the species scientific name, common name, habitat, and evidence of sign when no direct observations were made. Wildlife of uncertain identity were identified and named based on field guides, web sites, and other related literature (Burt & Grossenheider, 1980; Elbroch, 2003; Sibley, 2000 and Stebbins, 2003). A list of observed animal species and the potential for occurrence of common and special-status wildlife species are presented in Appendix A.

The study area was assessed in the field for its potential to support both common and special-status wildlife species based on habitat suitability comparisons with reported occupied habitats. The definitions of potential for occurrence used to determine the need for subsequent focused surveys within the study area and to assess project-related effects were based on methodology outlined in Sections 3.1.2.1 and 3.2.2.1 above.

3.2.2.2 Proposed Action

Short-Term Impacts

Construction of the LAMC Athletic Fields could have an adverse impact on wildlife species as the result of the permanent removal of 8.2 acres of native habitat. Development of mitigation areas to maintain or enhance similar habitat elsewhere in the Pacoima Wash is planned to mitigate this impact.

Long-Term Impacts

Athletic Fields operation would not result in the loss of wildlife. Effects of intermittent noise and light associated with field lighting and amplified sound systems used during scheduled events would be confined to the playing fields to the extent possible and would not affect surrounding wildlife.

Impact Summary

Impacts on wildlife would not be significant because there would be no loss of wildlife from either construction or operation of the proposed project.

Cumulative Impacts

Development of SIBL ballfields, El Cariso Community Regional Park and Golf Course, and other past projects have likely reduced wildlife activity in the area and caused wildlife movement to be concentrated along restricted corridors. Cumulative effects involving restrictions of wildlife
movement from the future operation of the proposed Athletic Fields and from development of similar fields on the LACCD parcel are not expected since the Los Angeles County drainage area and Pacoima Wash would continue their functions as wildlife corridors near the site.

3.2.2.3 Development of LACCD Property Only

This alternative would result in potential adverse impacts to locally protected wildlife on the LACCD Athletic Fields site. Noise, dust, and vibration resulting from short-term and long-term activities could temporarily deter individual animals from utilizing the project area. Some displacement may occur with impediments to animal movement. These impacts would be minimized since the project plans to implement protective measures. Impacts would be less than those of the Proposed Project alternative, since a smaller area (6.4 acres) would be affected.

3.2.2.4 No Action

Since no physical alteration (i.e., grading or excavation) would occur, the No Project Alternative would not adversely impact wildlife in the vicinity of the study area and no impacts are expected. Impact would be less than those of the Proposed Project alternative.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.2 Wildlife
3.3 Natural Drainage

3.3.1 Affected Environment

The Athletic Fields site is located within the Pacoima Wash Watershed situated within the Upper Los Angeles River Watershed (see Section 3.7-1 Water Quality and Supply, Figure 3.7-1, Pacoima Wash Watershed Map). Runoff in the Pacoima Wash Watershed begins in the Angeles National Forest and discharges to Pacoima Canyon Creek. This creek becomes Pacoima Wash downstream of the Pacoima Reservoir which is approximately two miles upstream of the project site. The Pacoima Wash discharges into the Lopez Dam Debris Basin. This is a managed flood control system. The Pacoima Wash has the ability to function as a local wildlife movement corridor within Los Angeles County and enhance the value of open space and undisturbed habitats within the region.

The project is located at the mouth of May Canyon Channel where it joins the Pacoima Wash. A drainage channel lies to the north of the site, which drains water from the El Cariso Community Regional Park and Golf Course. There are no surface water quality control improvements within this project area other than catch basins installed downstream of the site on Harding Street.

3.3.2 Environmental Consequences

3.3.2.1 Methodology

The analysis of impacts relative to natural drainage considered the following: whether existing drainage patterns would be substantially altered, whether existing and proposed infrastructure would accommodate estimate post-project runoff, and whether the project would result in high flood risks. The analysis is based in part on information provided in the Lopez Dam Basin Master Plan.

For the natural resources portion of this analysis, the topographic San Fernando USGS 7.5-minute quadrangle map and aerial photography (Digital Globe, 2008) were examined to determine the locations of likely natural drainage courses within the study area. Those portions of the study area suspected of containing natural drainage courses were also assessed by visual observation in the field. Potential natural drainage courses were evaluated by determining the presence of definable channels and/or hydrophytic vegetation, riparian habitat, and hydrologic regime within and adjacent to the study area. The FEMA flood-data maps (FEMA, Q3 Flood Data, 1995) and National Wetland Inventory (USFWS, 2009) were also evaluated to determine the locations and types of potential natural drainage courses that may occur within the study area.

3.3.2.2 Proposed Action

Short-Term Impacts

The State Water Resources Control Board (SWRCB) will require construction activities for the project to comply with the SWRCB General Construction Activity Storm Water Permit (NPDES No. CAS000002, Order No. 99-08-DWQ) (General Construction Permit). The General Construction Permit requires the preparation and approval of a Storm Water Pollution Prevention Plan (SWPPP) for the Athletic Field construction phase. Adverse impacts to natural drainage would be minimized with implementation of project-specific measures identified in the SWPPP. Because the bank of the Pacoima Wash would be stabilized, construction at the Athletic Fields site would require a California Fish and Game (CFG) Streambed Alteration Agreement, Regional Water Quality Control Board (RWQCB) 401 Permit, and ACOE Clean Water Act Permit. These agencies can only authorize actions if their approval would not result in a net loss of special aquatic resource areas or...
natural drainage courses. Compliance with the requirements of the ACOE, CDFG, and RWCQB would ensure no net loss would occur and would help to minimize impacts to natural drainage courses.

Long-Term Impacts

The proposed project will be designed with Low Impact Development (LID) site design criteria and to meet Los Angeles County Standard Urban Stormwater Mitigation Plan (SUSMP) standards. Once completed, the disturbance and/or alteration of land during activities associated with scheduled events could have minimal impact on flow courses within the project boundaries. In addition, as the Athletic Field project is located within a designated flood plain that is designed to manage floods, recurring impacts to the site from flooding can be anticipated. The flows from the proposed Athletic Fields will be minimal based on the recreational land use as the project site will remain primarily pervious. Larger sheet flows will discharge to the basin as is currently managed. A project-specific Hydraulics and Hydrology report will provide the engineering design criteria necessary for maintaining these recurring impacts to the site at a manageable level.

Impact Summary

Impacts on natural drainage would not be significant because potential effects to the natural drainage would be minimized with measures identified in the Construction SWPPP and Post-Development SUSMP. The disturbance of land during operation would have minimal impact on flow courses.

Cumulative Impacts

There are currently four proposed development projects within the local drainage area of the LAMC campus, as identified from a list of related projects secured from the Los Angeles City Department of Transportation. These projects would drain to the Pacoima Wash Diversion Channel which then discharges into the Tujunga Wash and ultimately to Reach 4 of the Los Angeles River. Based on the location of these projects and their points of discharge, in combination with the project's loss of less than 0.5-acres of the Pacoima Wash natural drainage course, the cumulative impacts related to natural drainage from this project are not expected to be adverse.

3.3.2.3 Development of LACCD Property Only

If the proposed ACOE Property is not developed for Athletic Fields, there would be no net change to the current water quality and hydrologic impacts from that property. Since the revetment would protect both the LACCD Athletic Fields site and the ACOE Property, impacts relating to natural drainage would be similar to those of the Proposed Action. The ACOE site is currently designed and managed as a flood control debris basin and the impacts from this use would not change.

3.3.2.4 No Action

The Athletic Field site is within a currently mapped flood inundation area and would incur periodic flooding, resulting in continuing erosion, which could impact natural drainage courses. Since this site is currently designed and managed as a flood control debris basin, impacts would be the same as existing conditions.
3.4 Riparian and Wetland Resources

3.4.1 Affected Environment

A riparian area exists along the County drainage channel that borders the project site to the north. This area has been illuminated on the National Wetland Inventory (USFWS, 2009). The study area extends into the Pacoima Wash. The Pacoima Wash is unique because it connects natural open space and undeveloped locales essential for the regional long-term viability of plants and wildlife. Additionally, Pacoima Wash has the ability to function as a local wildlife movement corridor within Los Angeles County and enhance the value of open space and undisturbed habitats within the region.

3.4.2 Environmental Consequences

3.4.2.1 Methodology

The analysis of impacts relative to riparian and wetland resources examined the following resources:

- San Fernando USGS topographic map;
- 2008 color aerial photographs (Aerial Photo USA, 2008);
- Google Earth version 4.3.7 (July 8, 2008);
- Los Angeles County, California West San Fernando Valley Area Soil Survey. (USDA-NRCS, 2009);
- California Interagency Watershed Mapping Committee [IWMC], 2004;
- Federal Emergency Management Agency [FEMA], 1998;
- National Wetlands Inventory (USFWS, 2009);
- Review of ordinary high water mark indicators for delineating arid streams in the southwestern United States. (Lichvar and Wakely, 2004);
- Distribution of Ordinary High Water Mark (OHWM) Indicators and Their Reliability in Identifying the Limits of “Waters of the United States” in Arid Southwestern Channels. (Lichvar et al., 2006); and

Those portions of the study area suspected of containing riparian and wetland resources (e.g., waters of the United States, wetlands, waters of the State, or sensitive riparian areas) were also assessed by visual observation in the field (see Appendix A). Potential riparian and wetland resource areas were evaluated by determining the presence of definable channels and/or hydrophytic vegetation and hydric soils.

3.4.2.2 Proposed Action

Short-Term Impacts

Construction of the Athletic Fields would not affect the riparian habitat along the Los Angeles County drainage channel since this area would be avoided, during, and after construction. Effects of
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.4 Riparian and Wetland Resources

Dust on this area would be minimized through watering as mandated by South Coast Air Quality Management District regulations. The riparian area where the roadway crosses the drainage channel would also be protected from intrusion by construction equipment during the roadway relocation and paving activities.

Stabilization of the bank of the Pacoima Wash has the potential to affect federal- and state-regulated waters as defined by the Clean Water Act (CWA) and California Fish and Game Code (CFGC) sections through direct removal, filling, or hydrological interruption. Such activities would likely require LAMC to obtain CWA, Regional Water Quality Control Board (RWQCB) and California Department of Fish and Game (CDFG) permits. These agencies can only authorize actions if their approval would not result in a net loss of special aquatic, riparian or wetland resources. Compliance with the CWA, RWQCB requirements, and CDFC sections would ensure that impacts to riparian and wetland resources would be minimized.

Long-Term Impacts

 Athletic Fields operation is not expected to result in adverse impacts to riparian or wetland resources. Intermittent noise and light associated with field lighting and amplified sound systems used during scheduled events would be unlikely to affect these resources. Access to the existing riparian areas would be prohibited and resources would be protected by fencing.

Impact Summary

 Impacts on riparian and wetland resources would not be significant because the project would not affect the riparian habitat along the Los Angeles County drainage channel or federal regulated waters as defined by the CWA, and riparian resources would be protected by fencing.

Cumulative Impacts

 Past activities that have affected riparian and wetland resources in the area include development of the El Cariso Golf course and El Cariso Community Regional Park, SIBL ballfields, and the Mountain Glen Terrace residential community. A drain from the golf course empties into the riparian area to the north of the project site where a culvert was built across this riparian area to enable construction of a roadway that connects Maclay Avenue and the SIBL ballfields. Future activities that are anticipated to impact the LAMC Athletic Fields or any other wetland or riparian resources locally, such as development of the proposed project and the LACCD parcel, would require consultation with the appropriate regulatory agencies to ensure that loss of wetland or riparian resources from other projects would not drop the amount of these resources below self-perpetuating levels in the region. Furthermore, project implementation will require LAMC to obtain CWA, RWQCB and CDFG permits. These agencies can only authorize actions if their approval would not result in a net loss of special aquatic, wetland or riparian resources. Compliance with the CWA, RWQCB and CDFC sections would ensure that cumulative impacts to wetland or riparian resources would be minimized.

3.4.2.3 **Development of LACCD Property Only**

Riparian and wetland resources along the Los Angeles County drainage channel would be protected under this alternative in a manner similar to that of the Proposed Action. Potential adverse impacts to riparian and wetland resources in the Pacoima Wash would also be similar to those of the Proposed Action since the revetment associated with this alternative would extend the length of
both the LACCD Athletic Fields site and the ACOE Property. Land disturbance, noise, dust, and vibration resulting from short-term and long-term activities could impact identified riparian and wetland resources; however, compliance with the CWA, RWQCB requirements, and CDFC sections would ensure that impacts to riparian and wetland resources would be minimized.

3.4.2.4 **No Action**

This project alternative would not result in adverse impacts to riparian and wetland resources since no construction or development of the site would occur. Impacts would be less than those of the Proposed Project and the Development of LACCD Property Only alternatives.
3.5 Endangered and Threatened Species

This section describes and evaluates endangered and threatened species conditions and determines the potential for their occurrence within study area limits.

3.5.1 Affected Environment

The study area was assessed in the field for its potential to support endangered or threatened wildlife species based on habitat suitability comparisons with reported occupied habitats.

Nine (9) special-status plant species are reported to occur within the San Fernando USGS quadrangle surrounding the study area. Four (4) of these species are protected by the federal and/or state Endangered Species Act (ESA) and are detailed below.

- **Berberis nevinii** (Nevin’s barberry) – an evergreen shrub; occurs in chaparral, coastal and riparian scrub communities and cismontane woodland, in gravelly soils. Associated with steep slopes and low-grade sandy washes. From 950 to 5,170 feet in elevation. This species distribution is restricted by substantive habitat requirements, which marginally or mostly occur within the study area, and a focused survey was performed to determine likely presence or absence of species and assess project-related effects.

- **Chorizanthe parryi var. fernandina** (San Fernando Valley spineflower) – an annual herb. Occurs within coastal scrub and chaparral on dry slopes and flats; sometimes at interface of 2 vegetation types, such as chaparral and oak woodland. Found on dry sandy soils. Up to 6,000 feet in elevation. This species distribution is restricted by substantive habitat requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

- **Dodecahema leptoceras** (slender-horned spineflower) – an annual herb. Occurs within chaparral and coastal scrub (alluvial fan sage scrub). Found on flood-deposited terraces and washes; associates include Encelia, Dalea, Lepidospartum, etc. From 660 to 2,500 feet in elevation. Species distribution is restricted by substantive habitat requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

- **Orcuttia californica** (California Orcutt grass) – an annual grass. Grows in dried mud beds and needs deep pools to germinate. Associated with vernal pools. From 50 to 2,165 feet in elevation. Species distribution is restricted by substantive habitat requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

Eight (8) special-status wildlife species are reported to occur within the San Fernando USGS quadrangle surrounding the study area. Five (5) of these species are protected by the federal and/or state Endangered Species Act (ESA) and are detailed below.

- **Catostomus santaanae** (Santa Ana sucker) – is currently restricted to three geographically separate populations in three different stream systems in southern California: (1) the lower and middle Santa Ana River; (2) East, West, and North forks of the San Gabriel River; and (3) the lower Big Tujunga Creek. Species distribution is restricted by substantive habitat
requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

- *Coccyzus americanus occidentalis* (western yellow-billed cuckoo) – an uncommon to rare summer resident of valley foothill and desert riparian habitats in scattered locations in California. Densely foliaged, deciduous trees and shrubs, especially willows, required for roosting sites. Species distribution is restricted by substantive habitat requirements, which are negligible within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

- *Polioptila californica californica* (coastal California gnatcatcher) – occurs in coastal sage scrub vegetation on mesas, arid hillsides, and in washes and nests almost exclusively in California sagebrush. This species distribution is restricted by substantive habitat requirements, which occur within the study area, and a focused survey was performed to determine likely presence or absence of species and assess project-related effects.

- *Rana muscosa* (Sierra Madre yellow-legged frog) – in southern California, populations are restricted to streams in ponderosa pine, montane hardwood-conifer, and montane riparian habitats. This species distribution is restricted by substantive habitat requirements, which do not occur within the study area, and no further survey or study is obligatory to determine likely presence or absence of this species.

- *Vireo bellii pusillus* (least Bell’s vireo) – resides in low riparian areas close to water or dry river beds. Their nests are usually constructed in bushes or within the branches of willows, mule fat, and mesquite. They are usually found below an elevation of 2,000 feet. This species distribution is restricted by substantive habitat requirements, which occur within the study area, and a focused survey was performed to determine likely presence or absence of species and assess project-related effects.

No endangered or threatened plants species were detected during the focused surveys. The California gnatcatcher was also not detected during the focused surveys. The field evaluation indicates that least Bell’s vireo are currently utilizing the study area and that a substantial portion of occupied least Bell’s vireo habitat was affected during the breeding seasons as a result of vegetation management and unpaved road improvements. Please see appendix A-5 A-6 and A-7 for more details regarding the focused plant and wildlife surveys.

3.5.2 Environmental Consequences

3.5.2.1 Methodology

The analysis described below is based on special status plant and wildlife focused surveys of the study area conducted from March through July 2009. Prior to beginning a field survey, available information was reviewed from resource management plans and other relevant documents, as outlined above in Sections 3.1.2.1 and 3.2.2.1 above, to determine the locations and types of biological resources that have the potential to exist within and adjacent to the study area. The focused surveys to determine the presence of plant and wildlife species that are protected by the federal and/or state ESA was based on methodology outlined below:
Endangered and Threatened Plants

Focused field plant surveys were conducted from March through July 2009 in accordance with the standardized guidelines issued by the U.S. Fish and Wildlife Service (USFWS, 2000), California Department of Fish and Game (CDFG, 2000), and the California Native Plant Society (CNPS, 2001). The surveys were intended to determine the presence/absence of special-status plant species within the study area. Furthermore, reference plant populations were surveyed within the Project’s floristic province in April of 2009 prior to initiating plant surveys. Please see appendix A-5 for more details regarding the focused plant surveys.

Endangered and Threatened Wildlife

Focused surveys for least Bell’s vireo were conducted within the study area on the following dates: April through July, 2009. The surveys were completed following the currently accepted USFWS Least Bell’s Vireo Survey Guidelines (USFWS, 2001). Surveys were conducted during the morning hours to determine presence/absence of the aforementioned targeted riparian species at times when they were most likely to be active and readily identifiable. Focused surveys for coastal California gnatcatcher were conducted following the currently accepted USFWS, Coastal California Gnatcatcher 1997 Presence/Absence Survey Protocol. Please see appendix A-6 and A-7 for more details regarding the focused wildlife surveys.

3.5.2.2 Proposed Action

Short-Term Impacts

Construction of the LAMC Athletic Fields could have an adverse impact on special status wildlife species and their habitats as the result of the permanent removal of 8.2 acres of native habitat. The historic occurrence of special status species such as California gnatcatcher and least Bell’s vireo in the area is well documented. Since special status wildlife species occur in the area, the California and federal Endangered Species Act require LAMC to obtain an Incidental Take Permit from the CDFG and/or USFWS. Those agencies can only grant an incidental take permit if the project would not jeopardize the continued existence of the aforementioned species. Development of off site mitigation areas to maintain these species’ habitat is also planned to meet this standard.

Short term noise and visual impacts from construction activities adjacent to the Los Angeles County drainage channel which is occupied on the occupied least Bell’s vireo habitat would be minimized by the installation of a protective screen (see Appendix E). All vegetation clearing within the study area would also take place outside of the typical avian nesting season (i.e., February 15 to August 31); to the maximum extent practical. Prior to ground-disturbing activities, a qualified biologist shall conduct and submit a nesting bird survey report. To the maximum extent practicable, a minimum buffer zone from occupied nests shall be maintained during physical ground-disturbing activities. Once nesting has been determined to cease, the buffer may be removed.

Long-Term Impacts

To minimize adverse impacts to endangered and threatened species due to long-term intermittent noise, light, and vibration associated with field lighting and amplified sound systems used during scheduled events, these systems would be controlled so that they focus on the Athletic Fields themselves. Long term noise and visual impacts adjacent to the Los Angeles County drainage channel which is occupied on the occupied least Bell’s vireo habitat will also be minimized by the...
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.5 Endangered and Threatened Species

installation of a protective screen, berm, and appropriate fencing to isolate the occupied habitat from the field activities.

Impact Summary

Impacts on endangered species, (e.g. least bell’s vireo), would occur during construction from the permanent removal of 8.2 acres of native habitat which could impact special status wildlife species and their habitats. Short and long-term impacts would not be significant because intermittent noise, light, and vibration during construction and during scheduled events would be controlled to focus on the Athletic Fields and buffered with protective screens so as to avoid possible impacts to endangered and threatened species.

Cumulative Impacts

In the past, a portion of previously occupied least bell’s vireo habitat has been affected as a result of vegetation management and unpaved road improvements. The majority of the past affects to the occupied habitat occurred outside of the project’s proposed physical ground disturbance footprint. Accordingly, it is expected that the occupied habitat would return to a condition that would enable the region to continue support this species.

No other cumulative impacts are expected from other projects on endangered and threatened species. Future activities within and surrounding the study area will require consultation with the appropriate regulatory agencies to ensure that the quantity of endangered and threatened species would not decrease below self-perpetuating levels in the region.

3.5.2.3 **Development of LACCD Property Only**

This alternative would result in similar adverse impacts to endangered and threatened species as the Proposed Project alternative. Noise, dust, and vibration resulting from short-term and long-term activities could temporarily deter individual animals from utilizing the project area. Impacts would be somewhat less than those of the Proposed Project alternative, since a smaller area would be affected.

3.5.2.4 **No Action**

This alternative would not result in adverse impacts to the Athletic Fields site. Since no physical alteration (i.e., grading or excavation) would occur, no disturbance to special status species in the vicinity of the study area would be experienced. Impacts would be less than those of the Proposed Project alternative.
3.6 Cultural Resources

The analysis of cultural resources consists of a description of the affected environment in the proposed project area and the environmental consequences due to direct, indirect, and cumulative effects of the project. The cultural resources at the proposed project site were evaluated by querying the South Central Coastal Information Center (SCCIC) at California State University Fullerton, the Natural History Museum of Los Angeles County (NHMLAC), the Native American Heritage Commission (NAHC), the San Fernando Valley Historical Society Website, and the County of Los Angeles Office of the Assessor’s Online Parcel Viewer (Assessor). Published and unpublished literature was reviewed. Additionally, a Phase I Archaeological Survey was completed on the ACOE Property by qualified URS Archaeologists on April 30, 2009.

3.6.1 Affected Environment

Cultural resources in the affected environment include paleontological resources and prehistoric, Native American, and historic archaeological resources.

3.6.1.1 Paleontological Resources

Paleontology is a branch of geology that studies prehistoric life forms other than humans through the analysis of plant and animal fossils. Fossils are the remains of organisms that lived in the region in the geologic past; therefore, they preserve an aspect of Southern California prehistory that is of scientific importance, since many species are now extinct. Fossils are found embedded in geologic formations that range in thickness from a few feet to hundreds of feet. These formations form a complex relationship below the surface. Sedimentary formations are layered atop one another, and over time the layers have been squeezed, tilted, folded, and shaped by fault activity. Sensitive fossil-bearing formations found at the surface also may extend from just below the surface to many miles below the surface. Consequently, the task of predicting paleontologically sensitive areas is difficult.

The proposed project site is underlain with surficial sediments (Qg and Qa), Older Dissected Surficial Sediments (Qae), and the deeper Saugus Formation (QTs). While Surficial Sediments and Older Dissected Surficial Sediments do not contain paleontological resources, excavation at greater depths into the Saugus Formation may encounter fossils of Pleistocene age.\\(^5\)

3.6.1.2 Archaeological Resources

The region of Sylmar, in the San Fernando Valley, was home to Native American population groups for at least 8,000 years. The native ecological environment consisted of a large basin surrounded by the San Gabriel Mountains and river and stream drainages, which were prime locations for Native American food processing and village sites. Prehistoric archaeological sites are often covered by 3 or more feet of topsoil, often protecting sites even after an area has become highly urbanized, particularly in areas with shallow building foundations, parks, parking lots, and roads. However, prehistoric sites occasionally can be found on the surface in urbanized areas that have not been extensively disturbed. The following is a cultural chronology of the Native American habitation of Southern California. Noted Anthropologist William Wallace first developed this chronology in 1955.

\(^5\) Dibblee, Thomas W. Jr., California Department of Conservation, Division of Mines and Geology; and U.S. Geological Survey. 1991. Geologic Map of the San Fernando and Van Nuys (North ½) Quadrangles, Los Ángeles County, California. Published by: Dibblee Geological Foundation P.O. Box 60560, Santa Barbara, CA 93160.
Since then, various chronologies suggested for several regions of California have been published. However, all of these regional chronologies were based on Wallace's version, with only minor changes. Wallace's 1955 chronology remains among anthropological and archaeological scholars as a standard cultural chronology for the prehistoric habitation of Southern California. The prehistoric and historic cultural history of the project area is outlined in the following chronology.\(^6\)

Early Man Horizon

From the end of the Pleistocene (approximately 11,000 years ago) to approximately 6,000 B.P. (B.C.), archaeological assemblages attributed to this horizon area were characterized by large projectile points and scrapers. The limited data available suggest that prehistoric populations focused on hunting and gathering, moving from region to region in small nomadic groups.

Milling Stone Horizon

This horizon is characterized by the appearance of hand-stones and milling-stones and dates between approximately 6,000 B.P. to 1,000 B.P. (B.C.). Artifact assemblages during the early Milling Stone period reflect an emphasis on plant foods and foraging subsistence systems. Inland populations generally exploited grass seeds, which became the primary subsistence activity. Artifact assemblages are characterized by choppers and scraper planes but generally lack projectile points. The appearance of large projectile points in the latter portion of the Milling Stone Horizon suggests a more diverse subsistence economy.

Intermediate Horizon

Dated from 1,000 B.C. to A.D. 750, the Intermediate Horizon represents a period of transition for prehistoric Native American groups. Little is known about the people of this period, especially those occupying inland southern California. Archaeological site assemblages possess many attributes of the Milling Stone Horizon. In addition, however, these sites generally contain large stemmed (or notched) projectile points and portable mortars and pestles. It is believed that the mortars and pestles were used to harvest, process, and consume acorns. Given the general lack of data on the subsistence system and the cultural evolution of this period, the substrates representing the cultural behavior are not well understood.

Late Prehistoric Horizon

From A.D. 750 to Spanish contact in A.D. 1769, the Late Prehistoric Horizon reflects an increased technological sophistication and diversity. This period is characterized by the presence of small projectile points, which imply the use of bow and arrow, as opposed to spear. In addition, site assemblages also include steatite bowls, asphaltum, grave goods, and elaborate shell ornaments. Utilization of bedrock milling slicks is prevalent throughout this horizon. Also, an increase in hunting efficiency and widespread exploitation of acorns provided reliable and storable food resources. These innovations seem to have promoted greater sedentism.

Native American Population: The Tataviam and Tongva/Gabrieleno

The Tataviam

The Tataviam are a Native American group that resided in and around the area encompassing the project site (see Figure 3.6-1, Tribal Area Map). The name “Tataviam” means, “People who Face the Sun.” The Tataviam belong to the family of Serrano people who migrated down into the Antelope, Santa Clarita, and San Fernando Valleys some time before 450 A.D. They settled into the upper Santa Clara River Drainage. Some Tataviam settlements in the Santa Clarita and upper valleys were Nuhubit (Newhall); Piru-U-Bit (Piru); Tochonanga which is believed to have been located at the confluence of Wiley and Towsley Canyons; and the very large village of Chaguibit, the center of which is buried under the Rye Canyon exit of I-5. The Tataviam also lived where Saugus, Agua Dulce, and Lake Elizabeth are located today. This places the Serrano among the larger “Shoshonean” migration into southern California that occurred 2,000 to 3,000 years ago.

The Tataviam people lived primarily on the upper reaches of the Santa Clara River drainage system, east of Piru Creek, but they also marginally inhabited the upper San Fernando Valley, including present day San Fernando and Sylmar (which they shared with their inland Tongva/Gabrieleno neighbors). The traditional Tataviam territory lies primarily between 1,500 and 3,000 feet above sea level. Their territory also may have extended over the Sawmill Mountains to include at least the southwestern fringes of the Antelope Valley, which they apparently shared with the Kitanemuk, who occupied the greater portion of the Antelope Valley. The Tataviam were hunters and gatherers who prepared their foodstuffs in much the same way as their neighbors. Their primary foods included yucca, acorns, juniper berries, sage seeds, deer, the occasional antelope, and smaller game such as rabbits and ground squirrels. There is no information regarding Tataviam social organization, though information from neighboring groups shows similarities among Tataviam, Chumash, and Gabrieleno ritual practices. Like their Chumash neighbors, the Tataviam practiced an annual mourning ceremony in late summer or early fall which would have been conducted in a circular structure made of reeds or branches. At first contact with the Spanish in the late 18th century, the population of this group was estimated at less than 1,000 persons.

However, this ethnographic estimate of the entire population is unlikely to be accurate, since it is based only on one small village complex and cannot necessarily be indicative of the entire population of Tataviam. Given the archaeological evidence at various Tataviam sites, as well as the numbers incorporated into the Spanish Missions, pre-contact population and early contact population easily exceeded 1,000 persons.

The Tataviam people lived in small villages and were semi-nomadic when food was scarce. The Tataviam were hunter-gathers who were organized into a series of clans throughout the region.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Jimsonweed, native tobacco, and other plants found along the local rivers and streams provided raw materials for baskets, cordage, and netting. Larger game was generally hunted with the bow and arrow, while snares, traps, and pits were used for capturing smaller game. At certain times of the year, communal hunting and gathering expeditions were held. Faunal resources available to the desert dwelling Serrano included deer, mountain sheep, antelope, rabbit, small rodents, and several species of birds (quail being their favorite). Meat was generally prepared by cooking in earth ovens, boiling, or sun-drying. Cooking and food preparation utensils consisted primarily of lithic (stone) knives and scrapers, mortars and metates, pottery, and bone or horn utensils. Resources available to the desert-dwelling Tataviam included honey mesquite, piñon nuts, yucca roots, and mesquite and cacti fruits.

These resources were supplemented with roots, bulbs, shoots, and seeds that, if not available locally, were traded for with other groups.

Labor was divided between the sexes. Men carried out most of the heavy but short-term labor, such as hunting and fishing, conducted most trading ventures, and had as their central concerns the well being of the village and the family. Women were involved in collecting and processing most of the plant materials and basket production. The elderly of both sexes taught children and cared for the young.

Tongva/Gabrieleño

The Tongva/Gabrieleño are a Native American people who inhabited the area in and around Sylmar, which they shared with the Tataviam people. Tongva means "people of the earth" in the Tongva language, a language in the Uto-Aztecan family. The Tongva are also often referred to as the Gabrieleño/Tonga or Gabrielino/Tongva tribe. Following the Spanish custom of naming local tribes after nearby missions, they were called the Gabrielino, Gabrieleno, or San Gabrieleno in reference to Mission San Gabriel Arcangel. Likewise, the nearby Tataviam people were known as "Fernandeño" after Mission San Fernando Rey de Espana.12 13

These Native Americans known as the Gabrieleno spoke a language that falls within the Cupan group of the Takic subfamily of the Uto-Aztecan language family. This language family is extremely large and includes the Shoshonean groups of the Great Basin. Given the geographic proximity of Tongva/Gabrieleño and Serrano bands living in the area and the linguistic similarities, ethnographers have suggested that they shared the same ethnic origins (Figure 3.4-1).14 Correspondingly, these groups will be referred to as the Gabrieleno in this document. The Gabrieleno are considered one of the most distinctive tribes in all of California, occupying a large area that was bordered on the west by Topanga and Malibu, the San Fernando Valley, the greater

Figure 3.6-1 Tribal Area Map
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Los Angeles basin, and the coastal strip south to Aliso Creek, south of San Juan Capistrano. Gabrieleño territory extended from the San Bernardino Mountains to the islands of Catalina, San Clemente, and San Nicolas and occupied most of modern day Los Angeles and Orange Counties, which is incredibly fertile land.¹⁵

Very little is known about early Tongva social organization because the band was not studied until the 1920s and had already been influenced by missionaries and settlers.¹⁶ Kroeber’s (1925) work indicates that the Tongva were a hierarchically ordered society with a chief who oversaw social and political interactions both within the Tongva culture and with other groups. The Tongva had multiple villages ranging from seasonal satellite villages to larger more permanent villages. Resource exploitation was focused on village-centered territories and ranged from hunting deer, rabbits, birds, and other small game to sea mammals. Fishing for freshwater fish, saltwater mollusks, and crustaceans and gathering acorns and various grass seeds were also important.¹⁷ Fishing technology included basket fish traps, nets, bonefish hooks, harpoons, and vegetable poisons, and ocean fishing was conducted from wooden plank canoes lashed and asphalted together.¹⁸ Tongva houses were large, circular, thatched and domed structures of tule, fern, or carrizo that were large enough to house several families.¹⁹ Smaller ceremonial structures were also present in the villages and were used in a variety of ways. These structures were earth-covered, and different ones were used as sweathouses, meeting places for adult males, menstrual huts, and ceremonial enclosures (yuva’r).²⁰

The coastal Tongva are among the few New World peoples who regularly navigated the ocean. They built seaworthy canoes, called t’at, using planks that were sewn together, edge to edge, and then caulked and coated with either pine pitch or, more commonly, the tar that was available either from the La Brea Tar Pits or asphaltum that had washed up on shore from offshore oil seeps. The t’at could hold as many as 12 people and all of their gear and all of the trade goods they were carrying to trade with other people, either along the coast or on one of the Channel Islands. The Tongva canoed out to greet Spanish explorer Juan Cabrillo when he arrived off the shores of San Pedro in 1542.

Modern place names with Tongva origins include: Pacoima, Tujunga, Topanga, Rancho Cucamonga, Azusa, and Cahuenga Pass.

The name of their creation deity, Quaoar, has been used to name a large object in the Kuiper belt. A 2,656-foot summit in the Verdugo Mountains, in Glendale, has been named Tongva Peak. The Gabrieleno Trail is a 32-mile path through the Angeles National Forest.

In the 1990s, Kuruvungna Springs, a natural spring located on the site of a former Tongva village on the campus of University High School in West Los Angeles, was revitalized due to the efforts of the Gabrielino/Tongva Springs Foundation. The spring, which produces 22,000 gallons of water each day, is considered by the Tongva to be one of their last remaining sacred sites and is regularly used for ceremonial events.21

Spanish Exploration, Mexican Settlement, and American Occupancy

Exploration of California first occurred in 1540 when a land expedition under the command of Hernando de Alarcon traversed inland along the Colorado River in an attempt to meet up with the party of Francisco Vasquez de Coronado, who was searching the Southwest for the legendary Seven Cities of Cibola (Gold). Two years later, Juan Rodriguez Cabrillo was commissioned by the Spanish government to investigate the western shores of the newly acquired territory. His investigation was restricted to the southern California coast, with only brief stops onshore to gather water and supplies. The first documented description of Los Angeles County comes from Juan Rodriguez Cabrillo in 1542. Apparently, his ship made land fall at what is today San Pedro, taking on fresh water and other supplies. He did not explore the area, but sailed on.22

During the early decades of the 19th century, independence groups sprang up throughout the Spanish Empire. Like the American colonists, the citizens of these Spanish colonies thought it was time for self-rule and abolition of the Viceroy system. At that time, California was considered a province of Mexico. Throughout the Spanish Period, California remained largely unsettled.

The first Spanish encounter with the Tataviam occurred when Gaspar de Portola's expedition arrived in Castaic Junction on August 8, 1769, on their way north from Los Angeles. It is recorded that the Tataviam gave the Spanish explorers food and ate with them. On September 8, 1797, Father Lasuen, accompanied by Father Francisco Dumetz, arrived in the San Fernando Valley and assembled a small arbor for a temporary church. A cross was raised and mass was celebrated as the official San Fernando Rey de Espana Mission.

On January 13, 1847, Captain John C. Fremont accepted the surrender of Governor Pio Pico and Commander Jose Maria Fores. In 1847, the final terms of surrender were signed at Campo de Cahuenga Adobe in the Cahuenga Pass. The Treaty of Guadalupe Hidalgo formally annexed California to the United States in early 1848, ending the Mexican War and beginning the American Period.

San Fernando Mission

On the afternoon of the founding day of the San Fernando Mission, 10 native children, 5 boys and 5 girls, were baptized; the first boy baptized was named Fernando Maria. This was the beginning of the end of the villages in the San Fernando and Santa Clarita Valleys; the Spaniards soon gathered the inhabitants to work on the construction of the San Fernando Mission. It was on August 28, 1795, that the Spaniards forced themselves to climb and descend the sharpest mountain ridges north into Newhall Valley (Santa Clarita Valley), reaching Castaic Lake.

The Spanish government subsequently established missions and military outposts to facilitate colonization of the area and to keep rival European nations out of the area. By the early 1800s, the Estancia de San Francisco Xavier, an outpost of the Mission San Fernando, was established in the fertile Santa Clara River Valley. By 1810, all of the Tataviam in the area had been baptized and relocated to the mission or the estancia. Eventually, the estancia was reclassified as an asistencia, or sub-mission. The Native Americans soon became referred to as Fernandeños, to reflect the Spanish Mission to which they were associated. The introduction of disease was disastrous to the native people. Well over 2,000 natives were interred in the San Fernando Mission cemetery between 1798 and 1852.

Mexico gained independence from Spain in 1822, and on July 25, 1826, Governor Jose Maria Echeandía issued a decree beginning the secularization of the California missions. However, because many Native Americans failed to leave the missions, Echeandía issued a second decree on January 6, 1831 encouraging the Native Americans to leave the missions. Many of the Tataviam left the mission and began their own ranches in the San Fernando Valley in the 1800s, when the mission system was in decline. El Rancho Encino was one of many, while some went up north to El Tejon to work. When John Harrington interviewed the last Fernandeños that lived on or near the mission, they told how the mission was in ruins in the late 1880s and described it as a ghost cemetery.

In August 1834, secularization became official under Governor Jose Figueroa. The Spanish mission system was largely abandoned, and the Mexican government bestowed land grants or ranchos on those loyal to the Mexican government and to some Anglo settlers. In the Santa Clara River Valley, Governor Juan B. Alvarado granted the deed to the former Asistencia de San Francisco Xavier lands toLt. Antonio Del Valle.23

Los Ranchos

The Rancho movement in California began in the fall of 1784, when three Spanish soldiers were given permits to graze their cattle on certain tracts of land by Pedro Fages, then governor of Alta California (see Figure 3.6-2, Old Spanish and Mexican Ranchos). These land grants were given mostly to soldiers or ex-soldiers during the Spanish Period, which ended in 1822. Formal grants by governors became common during the Mexican Period which followed.

The oldest of the San Fernando Valley ranchos is the 36,000-acre San Rafael, in the present day area of Glendale and Burbank. It was granted by Governor Fages to a young Spanish soldier, Corporal Jose Maria Verdugo, on October 20, 1784. This rancho later became the site of the San Fernando Mission. The rest of the ranchos of the San Fernando Valley were granted by the Mexican government after 1834 (the Mexican Period). The largest of these was the Rancho Ex-Mission de San Fernando, which occupied most of the San Fernando Valley, but several peripheral ranchos did exist. On December 5, 1845, the San Fernando Mission was leased to Andres Pico (brother of Governor Pio Pico) and Juan Manso for nine years. On June 17, 1846, the land was sold to Eulogio de Celis. By the time the United States took control of California in 1849, the Rancho Ex-Mission de San Fernando, owned by Eulogio de Celis and Pico, was the single largest land grant in California.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Andres Pico handed his portion of the rancho over to his brother Pío, who in turn sold out the mission to the now established “San Fernando Farm Homestead Association” in 1869 for $115,000. With this final conveyance, the Spanish and Mexican rancho days came to an end.

The San Fernando Farm Homestead Association turned the former mission land into a large and profitable wheat ranch. In 1874, Eulogio F. Celis (son of de Celis) sold his remaining land holdings of the former mission lands to George K. Porter and Senator Charles Maclay. Both Maclay and Porter’s lands would eventually become fields of barley and wheat.

In 1876, with the completion of the San Fernando railroad tunnel connecting northern and southern California, a period of rapid growth followed in southern California. In the 1880s a real estate boom occurred, and large properties, such as Maclay’s and Porter’s, were subdivided into lots for housing tracts and small businesses. Citrus groves for oranges and lemons also were established, and a rapid population growth in the Valley began. It has never ceased.24 25 26

Sylmar History

Father Iballa, Padre at the San Fernando Mission from 1820 to 1834, was indirectly responsible for Sylmar’s olives. He recognized the similarity of the climate and soil to those found in Europe where olives had been cultivated for centuries. He sent to Spain for young seedlings and planted them around the mission. Sylmar’s existence is so entwined with that of San Fernando that for many years the two were thought of as one. San Fernando became a city in 1874. By 1890, a group of Illinois businessmen bought 2,000 acres (8 km²) east of the railroad tracks on San Fernando Road, just south of Roxford Street, and planted olives on over 1,100 acres (4.5 km²). Calling themselves the Los Angeles Olive Growers Association, they built a packing plant and sold olives under the Sylmar Packing label. Sylmar’s olives became famous throughout the state for sweetness and purity. Chinese pickers were hired to harvest the crops, and they produced up to 800 US gallons (3,000 L) of olive oil per day. The pickling plant was on the corner of Roxford and San Fernando Road.

Along with its near perfect climate for growing olives, Sylmar also seemed ideal for the treatment of respiratory problems. The present Olive View-UCLA Medical Center has its root in a tuberculosis sanitarium that opened close to the current site in 1920 and was destroyed by a fire in 1962. A new major medical center facility opened in January 1971 and was destroyed in the Sylmar earthquake the following month. The new Olive View Medical Center was completed and opened in 1987.

Sylmar is a community conveniently located in the northernmost section of the San Fernando Valley. It is part of the City of Los Angeles and is served by the Los Angeles City and County governments. Its adopted motto, “It All Comes Together in Sylmar,” reflects both the vision of the community and the easy access to and from the area via the four major freeways that serve it.

3.6 Cultural Resources

Figure 3.6-2 Old Spanish and Mexican Ranchos
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

The topography is generally flat, with sloping hills of the San Gabriel Mountains to the north. Sylmar is the terminus of the Los Angeles Aqueduct and was once the site of the world’s largest olive groves—hence its name, which means “Sea of Trees.” It is the one area in the Los Angeles basin that is relatively smog free because of the occasionally strong winds along the foothills.

Stetson Ranch Equestrian Park, located just below the mountains and adjacent to Angelus National Forest, is one of only two such parks in Los Angeles City. Hang gliders can be seen soaring in the mountain areas and landing in Sylmar. Several other city and county parks and two golf courses also are located within Sylmar’s boundaries.

A veterans’ hospital built in 1926 at the top of Sayre Street was destroyed by the 1971 earthquake, and the entire 97 acres were dedicated to Los Angeles County in 1977 as Veterans Memorial Park.27

Pioneer Cemetery

Located on a 3.8-acre (15,000 m²) site at the corner of Foothill Boulevard and Bledsoe Street, Pioneer Cemetery was originally a 10-acre (400,000 m²) site, when dedicated in 1870. It was known at the time as the San Fernando Cemetery and also as the Morningside Cemetery, and it is the second oldest cemetery in the San Fernando Valley. Over 740 outstanding residents were buried there between 1892 and 1939. The cemetery was officially abandoned in 1960. Edith Reber, a long-time resident of Sylmar and an active member of the Chamber, ran a volunteer effort for many years to maintain the grounds, with the help of local volunteer groups. It is located on what is currently the corner of Foothill Boulevard and Bledsoe Street.28

3.6.2 Environmental Consequences

The methodology used to evaluate environmental consequences of the Proposed Action and an analysis of its potential effects are provided below regarding paleontological, archaeological, and historical resources, and human remains. Potential effects from cumulative projects are then assessed, followed by an assessment of potential effects from project alternatives.

3.6.2.1 Paleontological Effects

Methodology

Dr. Samuel McLeod, Director of Vertebrate Paleontology at the Natural History Museum of Los Angeles County, conducted a paleontological records check for the proposed project area on March 28, 2009. This search included a review of all recorded fossil records for locality and specimen data in the Museum’s permanent paleontology collection records (Figure 3.6-3, Geology Map). In addition, during the Phase I Archaeological Survey, the project site was also inspected for the presence of fossiliferous outcrops.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Proposed Action

The results of the paleontological records check indicated that the project area contains surficial deposits composed of older Quaternary Alluvium beneath soil, derived either as fan deposits from the mountains to the east and north or as alluvial deposits associated with the Pacoima Wash that forms the eastern border of the parcel. These deposits are unlikely to contain significant vertebrate fossil remains in the uppermost layers. However, considerable depths into older Quaternary sediments may contain significant vertebrate fossils, which are likely to be encountered. The closest fossil vertebrate locality in similar deposits is identified in the records as follows:

- LACM 5745, situated directly west of the proposed project area, just east of the Golden State Freeway (I-5) and between Foothill Freeway (I-210) and San Fernando Road, which contained fossil mastodon (*Mammut*) and horse (*Equus*).

In addition, at and near the Van Norman Reservoir, located west-southwest of the proposed project area, three fossil vertebrate localities were discovered from similar deposits at the proposed project site. These are identified in the fossil record as:

- LACM 3397, that produced fossil bison (*Bison*) at a seventy-five foot depth;
- LACM 7152 that produced fossil mammoth (*Mammuthus*) and bison (*Bison*) in terrace deposits; and
- LACM 1733 that produced fossil horse (*Equus*) at an undocumented depth.

Grading or very shallow excavation in the uppermost few feet of the project area is unlikely to uncover a substantial amount of vertebrate fossils. Deeper excavations, may well encounter fossil vertebrate remains, but no such excavations are planned. During the Phase I Archaeological Survey conducted on April 30, 2009, no exposed fossil outcrops were identified on the property and the ground surface varied in visibility from 0-10 percent. No fossil resources were observed on the surface. Nonetheless, the LAMC has indicated its commitment, in the event that paleontological discoveries are encountered, to cease excavation in the area of the find, contact a paleontologist who shall devise a plan for recovery in accordance with standards established by the Society of Vertebrate Paleontology, and document and submit any paleontological resources found to the Natural History Museum of Los Angeles County for curation.

29 Macleod, Samuel. 28 March 2009. Correspondence: Paleontological resources for the proposed LAMC Initial Study and SEIR, in the Community of Sylmar, project area. Available at: URS Corporation, 915 Wilshire Blvd, Suite 700, Los Angeles, CA 90017.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Figure 3.6-3 Geology Map
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

Blank Page for Back of Figure
3.6.2.2 Archaeological Effects

Methodology

An archaeological records search was undertaken by URS staff archaeologist, Laurie Solis, M.A., at the California OHP designated archaeological record repository SCCIC housed at California State University, Fullerton. This record search was undertaken on March 9, 2009, for previous archaeological investigations within the proposed project site and within a 0.5-mile radius, and for previously identified archaeological sites within the proposed project site and those identified within a 0.5-mile radius of the proposed project site. The results of the records search indicate that there are no properties currently listed on the NRHP, CRHR, LAHCM, or within an HPOZ.

In addition, a Phase I Archaeological Survey was conducted on the site.

Previous Studies within the Project Site

One previous archaeological investigation was undertaken within the boundaries of the proposed LACCD and ACOE properties. This study is identified in the archives as LA-384. In this study, in September 1977, a Phase I archaeological survey was undertaken by Patricia Martz of the Archaeological Research Unit, Dry Lands Research Institute, at the University of California, Riverside. This archaeological investigation was undertaken at the request of the ACOE. The survey included the lands under the ownership of the ACOE in Lopez Canyon and LACCD, at the location of Lopez Dam. No cultural resources were observed on the surface during the survey.

Previous Studies within 0.5 mile of the Project Site

Two previous archaeological studies have been completed within 0.5 mile of the proposed project site. These studies are identified in the archives as LA-455 and LA-464. The methodology and results of the investigations are as follows.

LA-455. In 1979, David Van Horn of Archaeological Associates conducted a Phase I survey of 100+ acres located near the Pacoima Dam, located east/northeast of the proposed LACCD and ACOE properties. No prehistoric materials were observed. However, a historic house likely dating to the 1920s-1930s was observed.

LA-464. In 1979, John Foster conducted a Phase I survey of the Burns Ranch property, located southeast of the LACCD and ACOE properties. One historic structure of possible significance was recorded.

Archaeological Resources

Although no archaeological sites have been recorded within a 0.5-mile radius of the project area, two archaeological sites have been recorded within a 1-mile radius of the proposed project site. These archaeological sites are identified in the archives as LAn-799 and LAn-1042H. The constituents of these sites are identified hereafter. Since construction would not affect these resources, no impacts would occur.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

LAn-799. Originally recorded in 1977 by Bob Edberg, this site is 1 mile east of the project site, in an area known as Limekiln Canyon. The site contains 2 lime kilns, iron barrel hoops, and pediments. The site dates from the Mission period (1700s) and may be associated with the San Fernando Mission. No artifacts were recovered, and the site may still be intact.

LAn-1042H. This site, first recorded in 1979 by Vance Bente, contains two rock features: a linear arrangement of rocks that parallels the contour of the terrace, and a rock walled turn out. Conflicting respondent information suggests that 1) features were present in the first two decades of the 1900s, resulting from land clearing by the original settler, Mr. Cox (1900-1905), or 2) features represent a Civilian Conservation Corps project of the 1930s.

URS Phase I Archaeological Survey

A Phase I archaeological survey was conducted by URS staff archaeologists, Laurie Solis, M.A., and Suzanne Black, B.A., on April 30, 2009. The survey was conducted on the ACOE Property using 15-meter spaced transects and conducted in a east to west zig-zag pattern. The ACOE Property was densely covered with thick vegetation. In addition, the surface of the project site was obstructed by the presence of modern dumping activities. Animal burrowing was observed in the presence of small rodent and rabbit burrows, and coyote dens. Modern trash and debris was also observed. Ground visibility was poor and ranged from 0–10 percent. No cultural resources were observed on the surface of the ACOE Property (see Appendix B).

Proposed Action

The ACOE Property is a vacant property that has not previously been developed. Areas adjacent to fresh water sources have traditionally been primary locations for prehistoric archaeological sites, since they were an important resource, not only for water in the dry southern California climate, but also for game and plant gathering. The ACOE Property is also situated on an alluvial fan on the bank of the Pacoima Wash, which, historically, would have been subjected to flooding and sedimentation, which would have covered any resources. Because of its location (adjacent to fresh water source), lack of development, and obstruction of ground surface during survey, there is a low likelihood that archaeological resources would be encountered during the development of the Athletic Fields.

3.6.2.3 **Historic Effects**

Methodology

A review of historic properties in the area identified two listed historic properties in the vicinity of the project site.

- Griffith Ranch Historical Monument, California State Historic Landmark No. 716 is within 1 mile of the proposed project site and is known as Griffith Ranch Historical Monument, California State Historic Landmark 716. Originally part of the San Fernando Mission lands, this ranch was purchased by David Wark Griffith, revered pioneer of silent motion pictures, in 1912. It provided the locale for many western thrillers, including Custer's Last Stand, and was the inspiration for the immortal production Birth of a Nation. In 1948, it was acquired...
by Fritz B. Burns, who has perpetuated the Griffith name in memory of the great film pioneer. The site location is 12685 Foothill Boulevard at Vaughn Street, San Fernando, CA.30

- **San Fernando (Pioneer Memorial) Cemetery**, California State Historic Landmark 753 and L.A. Historic Cultural Monument 586. The cemetery is located 2.20 miles from the proposed project site on a 3.8 acre (15,000 m2) site at the corner of Foothill Boulevard and Bledsoe Street. It was originally a 10-acre (400,000 m2) site, when dedicated in 1870. It was known at the time as the San Fernando Cemetery and also as the Morningside Cemetery, and it is the second oldest cemetery in the San Fernando Valley. Over 740 outstanding residents were buried there between 1892 and 1939. The site is located at 14451 Bledsoe Street, Sylmar, CA.

One property in the vicinity of the proposed project site is potentially eligible for listing and located within 2.5 miles of the proposed project site.

- **Rancho Sombrero**. The former Sylmar ranch of G. Henry Stetson (northwest of the project site), of the Stetson hat family, was reputed to have the largest private swimming pool in the country. Most of the 285 acres were sold in 1958 to the Church of Jesus Christ of Latter Day Saints. Part of the land today features a city-run riding ring.31

Proposed Action

Since none of these sites would be affected by development of the site, there would be no impact to NRHP, CHL, LA HCM eligible, registered or listed historic resources from the proposed project. Nonetheless, in the event that any prehistoric or historic cultural resources (chipped or ground stone lithics, animal bone, ashy midden soil, structural remains, historic glass or ceramics, etc.) are discovered during the course of construction, LAMC will require all work in the vicinity shall halt, and the archaeologist will evaluate the significance of the find, and if significant, identify the proper course for mitigation. Any archaeological resources encountered shall be documented on California Department of Parks and Recreation Forms (DPR) 523 Series and submitted to the South Central Coastal Information Center (SCCIC) at California State University Fullerton (CSUF). Resources shall be identified, cleaned, and curated at a museum or education institution for the benefit of future generations.

3.6.2.4 Human Remains Effects

Methodology

A record search was conducted at the SCCIC to determine the presence of human remains within the proposed project area. The search included a review of all recorded historic sites within a 1-mile radius of the proposed project area, as well as a review of all relevant cultural resource and survey reports. In addition, a review of the USGS 7.5 minute series San Fernando topographic quadrangle was completed, including a visual search for both the small and large cemetery icons.

Proposed Action

The nearest cemetery to the proposed project site is within 1.25-miles of the proposed project site and is known as Pioneer Cemetery. San Fernando (Pioneer Memorial) Cemetery, established in 1870, is deemed California State Historic Landmark 753, and Los Angeles Historic Cultural Monument 586. This flat, 3.8-acre Sylmar site is covered with native grasses and includes a walkway and memorial patio. This is the second oldest cemetery in the San Fernando Valley. It inter the remains of early pioneers, Civil War Veterans, and mission Indians.32

As part of the research efforts undertaken for this project, the NAHC was contacted on March 6, 2009 (response received on March 10, 2009) to ascertain the presence of known sacred sites and/or the potential presence of Native American cultural resources within the project site. A response from the NAHC indicated there was no known presence of such resources. Native American individuals and organizations potentially familiar with the project site were contacted on May 12, 2009. To date, we have received one response from the Gabrielino/Tongva tribe recommending Native American monitoring for the project33 (see Appendix B).

The project is not anticipated to impact human remains. In the event that human remains are encountered, LAMC plans to require construction in the area of the find to cease and to leave the remains in situ pending definition of an appropriate plan. The Los Angeles County Coroner will be contacted to determine the origin of the remains. In the event the remains are Native American in origin, the NAHC will be contacted to determine necessary procedures for protection and preservation of the remains, including reburial.

3.6.2.5 Summary of Impacts

Impacts on cultural resources would not be significant because surficial deposits are unlikely to contain significant vertebrate fossil remains in the uppermost layers; there is a low likelihood that archaeological resources would be encountered during the development of the Athletic Fields; no historic properties in the vicinity of the ACOE Property would be affected by development of the site; and there is no known presence of sacred sites and/or the potential presence of Native American cultural resources. The project is not anticipated to impact human remains.

3.6.2.6 Cumulative Effects

Past activities may have disturbed the area. No significant finds have been reported. Future excavation and development in an area with sensitive cultural resources could adversely affect the resource unless mitigation measures are employed. However, since mitigation measures would be provided for specific projects as they occur within the LAMC 2009 Facilities Master Plan area, cumulative impacts to cultural resources are not anticipated to occur.

33 March 2009. Native American Heritage Commission Sacred Sites Record Check for the Proposed LAMC Initial Study and SEIR, City and County of Los Angeles. Available at: URS Corporation, 915 Wilshire Blvd. Suite 700, Los Angeles, CA 90017
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources

3.6.2.7 Development of LACCD Property Only

This alternative would result in excavation and construction activities in previously undisturbed areas. As a result, direct or indirect impacts to undiscovered onsite archaeological and paleontological resources may occur under this alternative. This alternative poses a similar level of impact to the proposed project, in that there is a potential for archaeological and paleontological resources to exist and be disturbed under this alternative. Since there is a possibility of finding cultural resources at the LACCD site because of the location to a water source and undeveloped nature of the site, and this alternative poses a potential impact to paleontological resources, this alternative would be neither environmentally superior nor inferior to the project in relation to Cultural Resources.

3.6.2.8 No Action

Since there are no potentially historic structures within the proposed project site, historic impacts from this alternative would be the same as the project in that no potential impacts to historic structures would occur. The No Action Alternative would not result in any direct or indirect impacts to undiscovered onsite archaeological or paleontological resources within the project area, since no physical alteration (i.e., grading) at that site would occur under this alternative. Since no excavation would occur in previously undisturbed soils, there would be no direct archaeological or paleontological effects.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.6 Cultural Resources
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.7 Water Quality and Supply

3.7.1 Affected Environment

3.7.1.1 Surface Water Resources

The project is located within the Pacoima Wash Watershed situated within the Upper Los Angeles River Watershed (see Figure 3.7-1, Pacoima Wash Watershed Map). Runoff in the Pacoima Wash Watershed begins in the Angeles National Forest and discharges to Pacoima Canyon Creek. This creek becomes Pacoima Wash downstream of the Pacoima Reservoir which is approximately two miles upstream of the project site. The Pacoima Wash discharges into the Lopez Dam Debris Basin. The Dam spillway releases into the Pacoima Wash Diversion Channel which then discharges into the Tujunga Wash approximately four miles downstream of the project site. Tujunga Wash ultimately converges with the Los Angeles River. The Pacoima Wash Watershed has a total tributary area of 21,716 acres (8,788 hectares). The upstream watershed is 100 percent undeveloped. The downstream watershed is 16 percent residential, 8 percent recreational parks, and 76 percent undeveloped (PCR, 2005).

3.7.1.2 Surface Water Quality

Surface water quality may be impacted by both point source and non-point source (NPS) discharges of pollutants. Point source discharges are regulated through National Pollution Discharge Elimination System (NPDES) permitting. Non-point source pollution is now considered to be the leading cause of water quality impairments in the State, as well as the entire nation. Non-point source pollution is not as readily quantifiable as pollution that is derived from point sources, since it occurs through numerous diffuse sources. Rainwater, snowmelt, or irrigation water can pick up and transport pollutants as it moves across land or paved surfaces, and these pollutants may ultimately be discharged into streams, lakes, the ocean, and groundwater. Urban areas and agriculture are both considered to substantially contribute to nonpoint source pollution in surface waters; pollutants associated with agricultural areas include fertilizers, pesticides, fecal coliform, salts, and sediments. Pollutants associated with urban areas include pathogens, organic compounds, sediment, oil and grease, metals, trash and debris, and nutrients.

The water quality of the Pacoima Wash is considered to be good. Inflow into the Pacoima Wash and Lopez Reservoir is primarily ephemeral with flow rates dropping rapidly between rain events. A low to moderate inflow can maintain for several months following significant rain event. The majority of the upstream watershed undeveloped, uninhabited National Forest land. Sediment load and deposition is a naturally occurring issue within this watershed. Resulting from the high sediment load, turbidity is the primary water quality problem within the Pacoima Wash. As there is no agricultural or industrial activity upstream from the reservoir, the inflows to the Pacoima Wash and Lopez Reservoir are expected to have negligible concentrations of pollutants as identified within the Basin Plan (ACOE, 2005).

Stormwater Quality

The proposed Athletic Fields discharge directly to the Pacoima Wash which is located within Reach 4 of the Los Angeles River Watershed (LARWQCB Basin Plan, 1994). The proposed Athletic Fields would be located on ACOE Property within the Pacoima Wash. The Los Angeles District ACOE regulates flood control waters within the region of the watershed.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.7 Water Quality and Supply

The Athletic Fields would include a building for storage of equipment, access roadways, parking areas and other associated features. The total proposed development area is approximately 14.60Ac. The North field is approximately 7.13Ac with an estimated impervious area of 0.33Ac. The South field is approximately 7.49Ac with an estimated impervious area of 0.69 Ac.

Beneficial Uses and Water Quality Objectives

The beneficial uses and water quality objectives for the Pacoima Wash are identified in the Los Angeles Basin Plan. The existing and potential beneficial uses for the Pacoima Wash are Municipal and Domestic Supply (MUN), Groundwater (GWR), Contact Water Recreation (REC-1), Non-Contact Water Recreation (REC-2), Warm Freshwater Habitat (WARM), Wildlife Habitat (WILD), and Rare, Threatened or Endangered Species (RARE). The Basin Plan includes numeric water quality objectives to help protect the beneficial uses as identified. The water quality objectives include total dissolved solids (TDS), sulfate, chloride, boron, nitrogen, and sodium absorption ratio. Refer to Table 3.7-1 Water Quality Objectives for Pacoima Wash.

<table>
<thead>
<tr>
<th>Total Dissolved Solids (TDS)</th>
<th>Sulfate</th>
<th>Chloride</th>
<th>Boron</th>
<th>Nitrogen3</th>
<th>SAR1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Los Angeles Water Quality Control Plan (Basin Plan), dated June 13, 1994

1 Sodium Absorption Ratio (SAR) predicts the degree to which irrigation water tends to enter into cation-exchange reactions in soil.

2 Agricultural supply is not a designated beneficial use in this reach.

3 Site specific objectives have not been determined for this reach. The level necessary to MUN uses are at 10mg/L (USEPA MCL) and will be used to establish limits.

Pollutants of Concern

To evaluate the potential water quality impacts resulting from the proposed development of the recreation fields, an assessment of the pre-development and post-development stormwater quality of runoff was estimated using pollutants in stormwater associated with parks and recreation facilities. For the LAMC, these pollutants include: nutrients, trace metals, pathogens (e.g., fecal coliform), oil and grease, trash and debris. These pollutants were included in the water quality impact analysis because they have been identified as pollutants that can cause impairment to beneficial uses in the downstream reaches of the Los Angeles River Watershed. Based on the Basin Plan, sulfate, chloride, total dissolved solids were also included in the assessment.

Another consideration to the sediment loading within this watershed is post-fire concerns. Recently, the Marek Fire (October 12, 2008) burned in the Angeles National Forest, north of San Fernando Valley, in the foothills and lower peaks of the San Gabriel Mountain Range. All of the burned area drains into the Tujunga-Pacoima Watershed. Topography in the fire area is generally steep, with approximately 30% of the burned area having slopes exceeding 60% and about 53% on slopes from 30 to 60%.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.7 Water Quality and Supply

Figure 3.7-1 Pacoima Wash Watershed Map
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.7 Water Quality and Supply

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.7 Water Quality and Supply

The potential for increased runoff and sediment from the fire area is high due to hydrophobic soil conditions, steep slopes, and erodible soils. To date, increases in estimated post-fire flows have varied significantly depending on the model assumptions. Although the Lopez Canyon was not specifically analyzed, adjacent local canyons affected by this fire were estimated to have a 2.2 to 2.9 times flow increase for the 2-year rain event. 100-year flows increases were also estimated to increase 1.6 to 1.8 times for these same local canyons. Ongoing Forest Service research however supports that increased flow values could range from 6 to 40 percent higher than current flows (Merak Fire SEAT Report (2008)).

3.7.1.3 Water Supply

The LADWP is the primary water service purveyor to the proposed project area. Annual water demand in the LADWP service area is approximately 690,450 acre-feet (af). Governmental uses, including higher education institutions like LAMC, consumed approximately 44,000 af (7%) of the water provided by LADWP during fiscal year 2004. The LADWP receives its water from three principal water supply sources. The Los Angeles Aqueduct supplies approximately 230,000 af (34%), local groundwater sources supply approximately 95,000 af (15%), and Metropolitan Water District (MWD) supplies approximately 360,000 af (51%). The quantity of water supplies received from each source can fluctuate from year to year. Generally, when water deliveries from the Los Angeles Aqueduct have been low, the volume of purchased water from MWD has increased. Water conservation, water recycling programs, and great reliance on MWD water supplies are among the measures identified by LADWP to keep the gap between future demand projections and supply needs at a minimum. The LADWP accesses local groundwater supplies through pumping rights in the San Fernando, Central and West Coast Basins, including in the community of Sylmar.

On June 4, 2008 the Governor of the State of California declared a state-wide drought, issued an Executive Order, and directed the Department of Water Resources (DWR) and other entities to take immediate action to address the situation. The Executive Order directs the DWR to:

- Facilitate water transfers to respond to emergency shortages across the state.
- Work with local water districts and agencies to improve local coordination.
- Help local water districts and agencies improve water efficiency and conservation.
- Coordinate with other state and federal agencies and departments to assist water suppliers, identify risks to water supply and help farmers suffering losses.
- Expedite existing grant programs to help local water districts and agencies conserve.

The Executive Order also encourages local water districts and agencies to promote water conservation. They are encouraged to work cooperatively on the regional and state level to take aggressive, immediate action to reduce water consumption locally and regionally.

The proposed project is located within the LADWP 1,729-foot elevation above sea level service zone and is supplied water from Alta Vista Tanks 1 and 2 located at the north end of Hubbard Street. Water is conveyed to the LAMC campus through the LADWP 16-inch primary water line within Hubbard Street. A system of 8-inch and 2-inch distribution lines within the campus connects

to the primary water line where it crosses the Hubbard Street/Lexicon Avenue intersection. The 8-inch distribution line conveys water for domestic use and fire protection, and has a maximum flow capacity of 2,500 gallons per minute (gpm). The 2-inch line has a maximum flow capacity of 160 gpm and is used primarily for irrigation.

The existing water pressure available is 157 pounds per square inch (psi) static and 132 psi residual. In addition to the primary water line at Hubbard Street, there is a backflow assembly (back siphonage to prevent contaminants through the water service connection) and a 6-inch water line serving the north side of the campus. No reclaimed water lines serve the proposed project.

3.7.2 Environmental Consequences

3.7.2.1 Methodology

Surface Water Quality

Event Mean Concentrations

Event Mean Concentration (EMC) is the average concentration of a pollutant in the runoff from a storm event. In previous LAMC Master Plan studies, the pollutants chosen for analysis are total phosphorous, total nitrogen, ammonia, copper, total lead, dissolved zinc, aluminum, and total suspended solids. The Los Angeles County Storm Water Monitoring Program conducts comprehensive wet weather monitoring and publishes EMCs for several different constituents and a variety of land uses. Due to the relatively close location of the Los Angeles County monitoring stations to the project site, these numbers were used to provide EMCs for the existing and proposed land use types. Based on the Basin Plan, sulfate, chloride, Total Dissolved Solids and boron should also be analyzed for this project location when the final design documents are prepared. It is expected that based on the proposed land uses, the Basin Plan specific pollutants are not expected to cause impacts.

Currently, the Pacoima Wash does not include a dry weather/wet weather monitoring station for water quality assessment. Due to the lack of site specific stormwater quality data, the water quality impact assessment was completed using the estimated Event Mean Concentrations (EMCs) developed by the Los Angeles County Department of Public Works. EMCs are based on a collection of stormwater quality samples associated with specific land uses. An EMC is the average concentration of a pollutant in the stormwater runoff equal to the total mass of the pollutant divided by the total volume of storm runoff. EMCs can be used to estimate the stormwater quality pollutant loadings associated with specific land uses. Refer to Table 3.7-2 Event Mean Concentrations.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.7 Water Quality and Supply

Table 3.7-2 Event Mean Concentrations (EMCs)

<table>
<thead>
<tr>
<th>Open Space (Vacant)</th>
<th>Phosphorous (Total)</th>
<th>Nitrogen (Total)</th>
<th>Chloride</th>
<th>Sulfate</th>
<th>Ammonia</th>
<th>Oil & Grease</th>
<th>Total Dissolved Solids (TDS)</th>
<th>Total Suspended Solids (TSS)</th>
<th>Dissolved Copper (Cu)</th>
<th>Total Lead (TL)</th>
<th>Dissolved Zinc (Zn)</th>
<th>Total Aluminum (Al)</th>
<th>Fecal Caliform</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>µg/L</td>
<td>MPN/100 mL</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>1.89</td>
<td>15</td>
<td>237</td>
<td>186</td>
<td>15</td>
<td>56</td>
<td>1681</td>
<td>1397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- EMCs for each land use are derived from the Los Angeles County Integrated Receiving Water Impacts Report (1994-2000), Table 4-12, Vacant Land Use (Open Space).
- SID – Statistically Invalued Data, not enough data above detection limit collected.

The existing hydrologic conditions for LAMC athletic fields were modeled using the Los Angeles County Department of Public Works Hydrology Manual (LACDPW, 2006). Using the proposed site improvements, the hydrologic model predicted that under the return frequency of a 2-year 24-hour and 10-yr 24-hour storm event, an estimated post development sheet flow of approximately 0.150 cubic feet per second (cfs) and 0.277 cfs on the north field and 0.186 cfs and 0.343 cfs for the south field, respectively.

Pollutant Loadings

The analysis of impacts relative to water quality is defined by pollutant load. The pollutant load is calculated from estimated runoff volumes and EMC values based on the vacant (open space). Post project pollutant loads were compared with existing pollutant loads and regulatory criteria/standards to determine project impacts to surface water quality. Refer to Tables 3.7-3 and 3.7-4.

North Field:

Table 3.7-3 Post Development Pollutant Load

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Area (Ac)</th>
<th>Pre-Development Runoff Volume</th>
<th>Phosphorous (Total)</th>
<th>Nitrogen (Total)</th>
<th>Chloride</th>
<th>Sulfate</th>
<th>Ammonia</th>
<th>Oil & Grease</th>
<th>Total Dissolved Solids (TDS)</th>
<th>Total Suspended Solids (TSS)</th>
<th>Dissolved Copper (Cu)</th>
<th>Total Lead (TL)</th>
<th>Dissolved Zinc (Zn)</th>
<th>Total Aluminum (Al)</th>
<th>Fecal Caliform</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft³</td>
<td>lb</td>
<td>MPN/yr</td>
<td></td>
</tr>
<tr>
<td>2Yr-24Hr</td>
<td>12,955</td>
<td>0.13</td>
<td>1.53</td>
<td>5.34</td>
<td>13.75</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>191.68</td>
<td>150.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>65,488,269</td>
</tr>
<tr>
<td>10Yr-24Hr</td>
<td>23,902</td>
<td>0.239</td>
<td>2.82</td>
<td>9.85</td>
<td>25.37</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>353.64</td>
<td>277.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120,823,317</td>
</tr>
</tbody>
</table>
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.7 Water Quality and Supply

South Field:

Table 3.7-4 Post Development Pollutant Load

Frequency	Area (Ac)	Pre-Development Runoff Volume	Phosphorous (Total)	Nitrogen (Total)	Chloride	Sulfate	Ammonia	Oil & Grease	Total Dissolved Solids (TDS)	Total Suspended Solids (TSS)	Dissolved Copper (Cu)	Total Lead (TL)	Dissolved Zinc (Zn)	Total Aluminum (Al)	Fecal Coliform	
	ft²		lb													
2Yr-24Hr	16,049	0.16	1.89	6.61	17.03	0.13	-	237.45	186.35	0.015	-	0.056	1.684	-	68,765,213	
10Yr-24Hr	29,610	0.296	3.49	12.2	31.42	0.24	-	438.09	343.82	0.028	-	0.104	3.107	126,869,152		

Stormwater Quality Assessment

In order to address potential stormwater quality impacts from the proposed site improvements on the ACOE property, as assessment of both the pre-development and post-development stormwater quality runoff was determined. The estimated post-development stormwater pollutant loadings were compared to applicable water quality criteria, including water quality objectives.

Water Supply

Proposed water consumption was estimated using distinct assumptions and calculations unique to the Athletic Fields use. These estimates of project-related water demand and the information presented on the existing water supply and conveyance systems were used to assess the project impact on water service, including water supply and delivery systems.

To calculate the increase in future water demands of the Athletic Fields, two separate factors were utilized – one for irrigation and one for ancillary buildings. Water demand for irrigation of the Athletic Fields is based on the square footage of the fields. The amount calculated represents the total irrigation demand for the fields rather than the increase in demand over the existing condition as no demand is currently generated on the undeveloped site. The generation factor for the ancillary buildings was derived by multiplying the unit water generation factor of 120 gpd per 1,000 square feet for a type of use comparable to the project by 125% for a generation factor of 150 gpd per 1,000 square feet.

3.7.2.2 Proposed Action

Surface Water Quality

As required by the State Water Resources Control Board, the proposed project will have to comply with the SWRCB General Construction Activity Storm Water Permit (NPDES No. CAS000002, Order No. 99-08-DWQ) (General Construction Permit) for all construction activities. The General Construction Permit requires the preparation and approval of a SWPPP for the Athletic Field construction phase. The SWPPP would minimize impacts to water quality or discharge flows from project construction.
As stated in the Flood Control and Hydrology Section (Section 3.8), the Athletic Field construction project is located within a mapped 100-year flood plain. If a large rain event were to occur during construction, adverse impacts to water quality and soil erosion could occur. To reduce these potential effects, applicable Best Management Practices (BMPs) that are included within the Construction SWPPP would contain and manage project pollutant discharges, from both sediment and non-sediment pollutant sources, during all construction activities and rain events during the construction phase.

During operation, the proposed Athletic Fields are not expected to cause impact to water quality or discharge flows, once the regional water quality design requirements are met. There would be minimal alternations of existing natural drainage patterns. Contribution to post-development runoff water will be managed through the Standard Urban Stormwater Mitigation Plan (SUSMP) and ACOE development requirements that require floodable structures and minimal development (see Section 1.3 above). Bank management design, including planting of native vegetation, is an example of a BMP that will promote sediment load reduction in stormwater runoff. Implementation of these requirements will provide the necessary measures for reducing water quality impact from the site to a regulatory level. For this project infiltration BMPs are planned in areas where runoff would drain off-site. Based on the site soils and the preliminary hydrologic flow values that were calculated for this document, it is expected that buffer strips, infiltration trenches or biofiltration swales could all provide adequate flow and pollution reduction. As previously stated, the final hydrology analysis and specific design cross-sections along the Lopez Basin banks have not been completed at this time.

Water Supply

The proposed project proposes to connect the Athletic Fields via a below grade lateral to the existing 10-inch main located in the center of Harding Street. The proposed Athletic Fields includes construction of new on- and off-site water lines for domestic use and landscape irrigation. Water service would be provided by installing one line serving both domestic and fire water needs or two water lines with connection to the existing 24-inch low pressure line located at the intersection of Harding Street and Eldridge Avenue. Fire flow requirements would be incorporated into the facility design, with water pressure and volumes defined in consultation with the County and City.

Development of the Athletic Fields and ancillary facilities would result in an increase in on-site water consumption of 8,841 gpd (9.9 af annually). During fiscal year 2003-2004, irrigation water for public parks and golf courses, youth sports fields, community gardens, and commercial agriculture combined consumed 246 af, less than 0.0004% of the City’s total water consumption for this period.

The increase in water consumption associated with the Athletic Fields would be an amount too slight to be of consequence to LADWP water planning. Sufficient water would be made available from the Alta Vista Tanks to meet the water needs of the project site. Therefore, the proposed project will not result in adverse impacts to water supply.

Impact Summary

Impacts on water quality would not be significant because applicable Best Management Practices (BMPs) that are included within the SWPPP would contain and manage project pollutant discharges from both sediment and non-sediment pollutant sources during all construction activities and rain events during the construction phase. During operation, the Athletic Fields are not expected to cause impact to water quality or discharge flows. There would be minimal alternations of existing
natural drainage patterns. Contribution to runoff water will be managed through the Standard Urban Stormwater Mitigation Plan (SUSMP) and ACOE development requirements that require floodable structures and minimal development.

Impacts on water supply would not be significant because the increase in water consumption associated with the Athletic Fields would be an amount too slight to be of consequence to LADWP water planning. Therefore, the proposed project will not result in adverse impacts to water supply.

3.7.2.4 Cumulative Impacts

Past projects that affect water quality in the Pacoima Wash include runoff from El Cariso Community Regional Park and Gold Course, Mountain Glen Terrace, and SIBL Ballfields. There are currently four proposed development projects within the watershed. Based on the location of the proposed project and its point of discharge, the cumulative impacts from the proposed project are not expected to cause impacts to water quality. The flows from the proposed Athletic Fields will be minimal based on the land use type and those minimal flows will also discharge into the reservoir basin.

Regarding cumulative impacts on water supply, the cumulative projects that are being considered in the planning process would require approximately 644 af/year of water in 2015, or 0.0858 percent of the projected water use (about 749,900 af/year by the year 2015) within the LADWP service area. The development permit and environmental review processes administered by local agencies further reduce the potential for significant cumulative impacts on water facilities and supplies to occur by providing the LADWP, the City, and the project sponsor an opportunity to review and consider a project for potential conflict with urban water management plans. Taking into account these processes and the estimates of cumulative water demand of the proposed project and related projects within the LADWP service area; and the LADWP water management plans (including conservation and recycling measures); existing water supply would be sufficient to meet the demand generated by the proposed project and related projects.

3.7.2.5 Development of LACCD Property Only

With this alternative, since the revetment would protect both the LACCD Athletic Fields site and the ACOE Property, effects relating to water quality from erosion would be reduced. This alternative would result in less adverse effect compared to the Proposed Project, since development would occur on the LACCD property only. Adverse environmental effects would be minimized by mitigation.

This no ACOE alternative would not result in major adverse impacts. There would be a slight reduction in overall demand for water, wastewater, and landfill disposal capacity compared to the proposed project as a result of the decreased development area. Since this demand can be accommodated by existing systems, this alternative would result in impacts similar to the Proposed Action alternative.

3.7.2.6 No Action

This alternative would not add to overall demand for water, wastewater, or landfill disposal capacity, and therefore would have less impacts on these resources compared to the Proposed Action. Since this existing demand can be accommodated by existing systems, no adverse effects are anticipated.
3.8 Flood Control and Hydrology

3.8.1 Affected Environment

The proposed project is adjacent to the Lopez Dam Reservoir and Debris Basin. This debris basin is primarily a dry-land basin with no permanent impoundment. The operation of this basin is based on the control of the basin design flood to pass the spillway design flood as presented in the ACOE document “Reservoir Regulation Manual for Lopez Dam Flood Control Reservoir” dated January 1986 (Regulation Manual). The Dam completely contains the 10-, 50- and 100-year flood volumes within the reservoir area. The primary purpose of Lopez Dam is flood damage reduction. ACOE guidelines for basin land use are based on the 10-, 50- and 100-year flood lines.

The top of the dam is at elevation 1298.92 feet. The spillway is a broad-crested weir, 110 feet long, with a crest elevation at 1272.92 feet. The maximum discharge at spillway crest is 422 cfs. With the gate open at 5 feet, the reservoir can be completely evacuated within one day with no inflow. The Regulation Manual schedule calls for leaving the gated outlet open until the water surface reaches spillway crest, then closing the gate completely. Historically, the maximum water surface elevation occurred in 1978 and was measured at 1277.7 feet (ACOE, 2005).

There are two drainage features, the May Canyon Channel and Channel C that are in the vicinity of the proposed project. The May Canyon Channel begins near the intersection of Hubbard Street and Garrick Avenue and extends underground through the County Recreation Area until it surfaces and converges with the Pacoima Wash located to the east of the proposed project. Channel C begins at Hubbard Street and extends aboveground along the northern boundary of the existing LAMC campus. Once Channel C reaches the northeast corner of the campus, it becomes an underground channel that drains to a pond on the El Cariso Golf Course to the east. Currently, runoff from the residential areas north of the site is intercepted by the drainage facilities in Hubbard Street. Areas northwest of the project site as well as portions of the existing El Cariso Park are tributary to May Canyon Channel. Drainage on the current campus runs northwest and north to southeast. Locally, all of the drainage from these areas discharge into the Pacoima Wash and ultimately to the Los Angeles River, Reach 4.

The proposed project is located within the Pacoima Wash flood plain (see Figure 3.8-1, Flood Plain Map). The entire site is located within the 100-year Zone AO floodplain and floodway limits as delineated on Panel No. 1075 of 2350 of the Flood Insurance Rate Maps issued in conjunction with the National Flood Insurance Program (NFIP) administered by the Federal Emergency Management Agency (FEMA). The source for this floodplain is the Pacoima Wash. The proposed project is located at the mouth of May Canyon Channel where it joins the Pacoima Wash.

3.8.2 Environmental Consequences

3.8.2.1 Methodology

The analysis presented below addresses impacts on hydrology and flood control and is based in part on information provided in the Water Resources Technical Report, 2006 prepared by PSOMAS. This report provides an analysis of the short-term and long-term impacts of the proposed project.
3.8.2.2 **Proposed Action**

The proposed project is located within the 100-year Zone AO floodplain. If a large rain event were to occur, significant adverse impacts could occur. Developments within the ACOE inundation flood elevations will need to comply with ACOE approved design constraints including floodable restrooms, floodable structure and field improvements that can sustain inundation and acceptable related maintenance costs.

There will be minimal alterations of existing natural drainage patterns and the contribution to runoff water will be managed through the Standard Urban Stormwater Mitigation Plan (SUSMP) and ACOE development requirements. From a hydrologic perspective, the proposed wash bank modifications will provide engineered mitigation for ongoing bank erosion issues. Since the proposed project is located within a designated flood plain that is designed to manage floods, recurring impact to the site from flooding can be anticipated. A project-specific Hydraulics and Hydrology report will provide the engineering design criteria necessary for reducing these recurring impacts to the site to a manageable level.

Impact Summary

Impacts involving flood control and hydrology would not be significant because the project would comply with ACOE approved design constraints including floodable restrooms, floodable structure and field improvements that would sustain inundation.

Cumulative Impacts

Past projects that have increased runoff into Lopez Basin include Mountain Glen Terrace, El Cariso Community Regional Park and Golf Course, and the SIBL ballfields due to increased impervious surfaces and irrigation. Future development of the proposed site and the LACCD parcel would contribute to this runoff. There are also four other proposed development projects being proposed within the watershed, which combine with flows from the Pacoima Wash downstream of the site at Reach 4 of the Los Angeles River. Based on the location of these projects and their points of discharge, the cumulative impacts from these projects combined with those of the proposed project would not exceed flood protection levels established by FEMA or safe operating levels for Lopez Dam established by the ACOE.

3.8.2.3 **Development of LACCD Property Only**

Bank stabilization would reduce water quality and hydrologic impacts to the ACOE and LACCD properties. Development of Athletic Fields on the LACCD property would result in less adverse effects when compared with the Proposed Action. Adverse environmental effects would be minimized by mitigation

3.8.2.4 **No Action**

The Athletic Field sites are within a currently mapped flood inundation area and would incur periodic flooding, resulting in continuing erosion, which could impact water quality and hydrology. Since these sites are currently designed and managed as a flood control debris basin, these impacts would be considered the same as those of the existing conditions.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.8 Flood Control and Hydrology

Figure 3.8-1 Flood Plain Map
Blank Page for Back of Figure
3.9 Recreation

3.9.1 Affected Environment

The Lopez Dam Basin Master Plan, prepared by the ACOE, presents an overall view of the present and proposed uses for federally owned land in the Lopez Dam Basin, which includes LAMC’s proposed Athletic Fields sites. According to the Lopez Dam Basin Master Plan, land designated for recreation development may be leased to local sponsors interested in developing, operating, and maintaining recreation facilities within specified areas. The Lopez Dam Basin Master Plan describes existing recreation facilities, and potential future recreation opportunities by future recreation lessees. The Lopez Dam Basin Master Plan designates the ACOE Property proposed for development of the Athletic Fields for recreational uses. The property is located within Planning Area 1, which calls for intensive recreation with potential for high-impact recreation.

Currently, the LACCD and ACOE properties proposed for use as LAMC Athletic Fields are used by local community members for passive recreational uses such as walking, mountain bike riding, and other outdoor activities. These parcels do not contain any developed active recreational facilities by the City, County, or ACOE.

There are two regional parks and two community parks located in the Sylmar Community Plan area. The two regional parks are El Cariso Community Regional Park and Veterans Memorial Community Regional Park, both owned and operated by the County of Los Angeles Department of Parks and Recreation. The two community parks are Stetson Ranch Park consisting of 29 acres and Sylmar Recreation Center consisting of 20 acres. Several parks exist within a 3.0-mile radius that serves both the community of Sylmar and the nearby City of San Fernando (Figure 3.9-1, Local and Regional Parks). These parks are:

1. El Cariso Community Regional Park
2. Veterans Memorial County Park
3. Stetson Ranch Park
4. Sylmar Recreation Center
5. Wilson Canyon Park
6. Sylmar Park
7. Layne Park
8. Pioneer Park
9. Recreation Park
10. Hubert Humphrey Memorial Park

3.9.2 Environmental Consequences

3.9.2.1 Methodology

The analysis described below is based on a desktop inventory conducted to determine where recreational uses would be sensitive to the construction, operation, and maintenance of the Master Plan. Information was compiled through regional/local maps and planning documents. The ACOE Lopez Dam Basin Master Plan and the Los Angeles County General Plan, City of Los Angeles General Plan, and Sylmar Community Plan were evaluated to provide insight into the recreational goals and regulations for the proposed project sites and surrounding communities. The analysis also evaluated the project’s consistency with applicable federal and local plans and policies related to recreation and any potential impacts resulting from construction of the Athletic Fields in a previously passive open space.

3.9.2.2 Proposed Action

Short-Term Impacts

Construction of the Athletic Fields would not require the use of existing neighborhood and regional parks nor would staging of construction equipment or activities occur within any parkland or recreational facility, so direct impacts would not occur.

The proposed development would not include residential development and therefore, would not result in an indirect demand for open space and recreational facilities that would be triggered by an increased residential population to the community. Construction activities would not restrict parking for, or access to recreational facilities adjacent to the proposed project site. Construction crews working on the Campus would not use the El Cariso Community Regional Park or the El Cariso Golf Course in such a manner that any indirect physical deterioration of facilities would occur.

Currently, the ACOE Property is used by local community members for passive recreational uses such as walking, mountain bike riding, and other outdoor activities. This parcel does not contain any established recreational facilities. The Lopez Dam Basin Master Plan designates the ACOE Property for recreational uses. The property is located within Planning Area 1, which calls for intensive recreation with potential for high-impact recreation. The adjacent LACCD property is designated by the City of Los Angeles as Open Space/Agriculture, which can be used for parks and recreational facilities; nature reserves; closed sanitary landfill sites; public water supply reservoirs; and water conservation areas. The proposed Athletic Fields would be in compliance with the City’s Open Space/Agriculture designation.

Upon commencement of construction, access by local community members to the ACOE Property would be restricted. However, the local community would continue to have access to the surrounding area along the pedestrian path between the golf course to the west, along the east of the Pacoima Wash and the Angeles National Forest.

Long-Term Impacts

Operation of the Athletic Field would limit access to the local community to this site for passive recreational use since the Athletic Field would be for College use only. The local community would continue to have access to the surrounding area along and to the east and west of the Pacoima Wash, to surrounding community and regional parks, and to the Angeles National Forest.
Figure 3.9-1 Local and Regional Parks
Current use of the El Cariso Community Regional Park by LAMC students for baseball and softball practices and games would be reduced by building the proposed Athletic Fields, which would allow for greater use of those sites by the local community, which would be a beneficial effect. Since additional students that would join LAMC to participate in athletic programs would use the Athletic Fields, their development would not increase the use of existing neighborhood and regional parks or have other indirect long-term effects.

Impact Summary

Impacts on recreation would not be significant because construction of the Athletic Fields would not require the use of existing neighborhood and regional parks nor would staging of construction equipment or activities occur within any parkland or recreational facility.

Long-term impacts would not be significant because use of the El Cariso Community Regional Park by LAMC students for baseball and softball practices and games would be reduced by building the proposed Athletic Fields, which would allow for greater use of those sites by the local community. Since additional students that would join LAMC to participate in athletic programs would use the Athletic Fields, their development would not increase the use of existing neighborhood and regional parks or have other indirect long-term effects.

Cumulative Impacts

Past recreational developments in the area include SIBL ballfields and fields at the El Cariso Community Regional Park. Proposed development of the LACCD parcel would provide additional ballfields in the area. Of the other future projects planned within a 4.0 mile radius of the site, no recreational improvements are planned. Future development of several other projects may result in the need for additional recreational uses within the Sylmar community; specifically those projects proposing residential development. It is expected that planned housing development projects would increase demand on local parks. Since the proposed project is in response to projected student and community needs, development of the Athletic Fields would not contribute to the demand for parkland or recreational facilities outside LAMC.

Development of the Athletic Fields would result in the provision of current recreational facilities being made available for others, since current use of the El Cariso Community Regional Park by LAMC students for baseball and softball practices and games would be reduced. The proposed Athletic Fields would reduce passive recreation at the ACOE Property but would still allow access to the local community to the surrounding areas along and to the east and west of the Pacoima Wash, to surrounding community and regional parks, and to the Angeles National Forest. Since other projects in the area would not reduce this access, there would be no cumulative reduction of passive open space for recreational uses.

3.9.2.3 Development of LACCD Property Only

Although this alternative would have no direct physical effect on the ACOE Property, it would have indirect effects on recreation. If the proposed ACOE Property site remained undeveloped as disturbed natural open space and other aspects of the 2009 LAMC Facilities Master Plan were implemented, no temporary parking for the Health, Fitness and Athletics Building would be provided. Reduction of parking would adversely affect the ability of the college to attract students to the Health and Fitness programs, and would reduce the functionality of the LACCD Athletic Field.
Use and lease of County and other off-site baseball athletic fields would continue, which would reduce the ability of the College to schedule games, reducing the involvement of students in intercollegiate and team sports, and reducing the attractiveness of the athletic programs. The continued passive recreational use of the ACOE Property would maintain existing uses of the site by walkers and other visitors to the area. The net effects of this alternative would be to reduce the overall availability of recreational facilities and opportunities for the College compared to the Proposed Project.

3.9.2.4 No Action

Although this alternative would have no direct physical effect on the environment, it would also not improve the site for recreational purposes as allowed in the Lopez Dam Basin Master Plan. Further, No Action would exacerbate the College’s increased need for recreational facilities and opportunities; would result in a deficiency of recreational facilities available for current athletes of the campus; and would require continued use of County Parks for Athletic Programs. Continued use of County facilities would continue to require ongoing maintenance by the College, even as availability diminishes due to increasing demand, thereby increasing costs without corresponding benefits to the College or community.

The ACOE Property would continue to be used for passive recreation by community members. Since this property is a small part (8 acres) of the large passive recreational space contained within the Pacoima wash area, the recreational benefit of this alternative would be small compared to the positive recreational benefits of the project.
3.10 Air Quality

3.10.1 Affected Environment

3.10.1.1 Regional Climate

The topography and climate of Southern California combine to make the South Coast Air Basin (Basin) an area with a high potential for air pollution, constraining efforts to achieve clean air. During the summer months, a warm air mass frequently descends over the cool moist marine layer produced by the interaction between the ocean’s surface and the lowest layer of the atmosphere. The warm upper layer forms a cap or “inversion” over the cool marine layer and inhibits the pollutants released into the marine layer from dispersing upward. In addition, light winds during the summer further limit ventilation. Furthermore, sunlight triggers the photochemical reactions which produce ozone, and this region experiences more days of sunlight than many other major urban areas in the nation.

3.10.1.2 Regional Air Quality

The South Coast Air Quality Management District (SCAQMD) has the responsibility to ensure that state and federal ambient air quality standards are achieved and maintained in its geographical jurisdiction. Health-based air quality standards have been established by the federal and state government for the following criteria air pollutants: ozone, carbon monoxide (CO), nitrogen dioxide (NO$_2$), particulate matter less than 10 microns (PM$_{10}$), particulate matter less than 2.5 microns (PM$_{2.5}$), sulfur dioxide (SO$_2$) and lead. These standards were established to protect sensitive receptors with a margin of safety from adverse health impacts due to exposure to air pollution. California standards are more stringent than federal standards and in the case of PM$_{10}$ and SO$_2$, far more stringent. California has also established standards for sulfate, visibility, hydrogen sulfide, and vinyl chloride. The Basin is classified as a non-attainment area for O$_3$, PM$_{2.5}$, and PM$_{10}$ as shown in Table 3.10-1. The federal and state ambient air quality standards for each of all criteria pollutants are shown in Table 3.10-2.

Table 3.10-1 Federal and State Attainment/Non-attainment Designations for the South Coast Air Basin

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>State Status</th>
<th>Federal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Attainment</td>
<td>Attainment/Maintenance</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Attainment</td>
<td>Attainment/Maintenance</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Non-attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Non-attainment</td>
<td>Non-attainment</td>
</tr>
<tr>
<td>Ozone (1-hour)</td>
<td>Extreme Non-attainment</td>
<td>Extreme Non-attainment*</td>
</tr>
<tr>
<td>Ozone (8-hour)</td>
<td>Extreme Non-attainment</td>
<td>Severe-17 Non-attainment</td>
</tr>
<tr>
<td>Lead</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
</tbody>
</table>

Source: www.arb.ca.gov

*This was the status under a prior standard. The Federal 1-hour ozone standard was vacated in 2006.
Table 3.10-2 Federal and State Air Quality Ambient Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>Federal Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>1 Hour</td>
<td>0.09 ppm (180 µg/m³)</td>
<td>Same as Primary</td>
</tr>
<tr>
<td></td>
<td>8 Hour</td>
<td>0.070 ppm (137 µg/m³)</td>
<td>Same as Primary</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM₁₀)</td>
<td>24 Hour</td>
<td>50 µg/m³</td>
<td>150 µg/m³</td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m³</td>
<td>15 µg/m³</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hour</td>
<td>9 ppm (20 mg/m³)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>20 ppm (23 mg/m³)</td>
<td>Non-Dispersive Infrared Photometry (NDIR)</td>
</tr>
<tr>
<td></td>
<td>(Lake Tahoe)</td>
<td>6 ppm (7 mg/m³)</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>30 Day Average</td>
<td>1.5 µg/m³</td>
<td>Same as Primary</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>--</td>
<td>High Volume Sampler and Atomic Absorption</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>24 Hour</td>
<td>0.04 ppm (105 µg/m³)</td>
<td>0.30 ppm (80 µg/m³)</td>
</tr>
<tr>
<td></td>
<td>3 Hour</td>
<td>--</td>
<td>0.14 ppm (365 µg/m³)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.25 ppm (655 µg/m³)</td>
<td>--</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8 Hour</td>
<td>Extinction coefficient of 0.23 per kilometer – visibility of ten miles or more (0.07 – 30 miles of more for Lake Tahoe) due to particles when relative humidity is less than 70%. Method: Beta Attenuation and Transmittance through Filter Tape.</td>
<td>--</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hour</td>
<td>25 µg/m³</td>
<td>No Federal Standards</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm (42 µg/m³)</td>
<td>--</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>24 Hour</td>
<td>0.01 ppm (26 µg/m³)</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1. California standards for O₃, CO (except Lake Tahoe), SO₂ (1 and 24 hour), NO₃, PM₁₀, PM₂.₅, and visibility reducing particles, are values that are not to be exceeded. All others are not to be equaled or exceeded. CA AQPS are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
2. National standards (other than O₃, particulate matter, and those based on annual averages or annual arithmetic mean) are not to be exceeded more than once a year. The O₃ standard is attained when the fourth highest 8-hour concentration in a year, averaged over three years, is equal to or less than the standard. For PM₂.₅, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM₁₀, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact EPA for further clarification and current federal policies.
3. Concentration expressed in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25 degrees Celsius (°C) and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
4. Any equivalent procedure, which can be shown to the satisfaction of CARB to give equivalent results at or near the level of the air quality standard, may be used.
5. National Primary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
7. Reference method as described by EPA. An “equivalent method” of measurement may be used but must have a “consistent relationship to the reference method” and must be approved by EPA.
8. CARB has identified lead and vinyl chloride as ‘toxic air contaminants’ with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.

Source: California Air Resources Board, 6/2009

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Concentration¹</th>
<th>Method¹</th>
<th>Primary¹</th>
<th>Secondary¹</th>
<th>Method¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>1 Hour</td>
<td>0.09 ppm</td>
<td>Ultraviolet Photometry</td>
<td>0.075 ppm</td>
<td>147 µg/m³</td>
<td>Ultraviolet Photometry</td>
</tr>
<tr>
<td></td>
<td>8 Hour</td>
<td>0.070 ppm</td>
<td>0.14 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM₁₀)</td>
<td>24 Hour</td>
<td>50 µg/m³</td>
<td>150 µg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual Arithmetic Mean</td>
<td>20 µg/m³</td>
<td>15 µg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hour</td>
<td>9 ppm</td>
<td>Non-Dispersive Infrared Photometry (NDIR)</td>
<td>9 ppm (10 mg/m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>20 ppm</td>
<td>9 ppm (40 mg/m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Lake Tahoe)</td>
<td>6 ppm</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>30 Day Average</td>
<td>1.5 µg/m³</td>
<td>1.5 µg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calendar Quarter</td>
<td>--</td>
<td>Same as Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>24 Hour</td>
<td>0.04 ppm</td>
<td>Ultraviolet Fluorescence</td>
<td>0.30 ppm (80 µg/m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Hour</td>
<td>--</td>
<td>0.14 ppm (365 µg/m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>0.25 ppm</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8 Hour</td>
<td>Extinction coefficient of 0.23 per kilometer – visibility of ten miles or more (0.07 – 30 miles of more for Lake Tahoe) due to particles when relative humidity is less than 70%. Method: Beta Attenuation and Transmittance through Filter Tape.</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hour</td>
<td>25 µg/m³</td>
<td>Ion Chromatography</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 Hour</td>
<td>0.03 ppm</td>
<td>Ultraviolet Fluorescence</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>24 Hour</td>
<td>0.01 ppm</td>
<td>Gas Chromatography</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Criteria Pollutants

The following paragraphs briefly describe the adverse human health effects of the six criteria pollutants monitored in the Basin.

Ozone

Description: Ozone (O₃) is a gas composed of three oxygen atoms. Ozone is not usually emitted directly into the air, but at ground-level is formed by photochemical reactions between NOₓ and Volatile Organic Compounds (VOCs) in the presence of sunlight. O₃ is a pungent, colorless gas typical of southern California smog. O₃ levels peak during the summer and early fall months. VOCs accumulate in the atmosphere more quickly during the winter when sunlight is limited and photochemical reactions are slower. VOC is also commonly referred to as Reactive Organic Gas (ROG).

Health Effects: Breathing O₃ can trigger a variety of health problems including chest pain, coughing, throat irritation, and congestion. It can worsen bronchitis, emphysema, and asthma. Ground-level ozone can also reduce lung function and inflame the linings of the lungs. Repeated exposure may permanently scar lung tissue. These health problems are particularly acute in sensitive receptors such as the sick, elderly, and young children.

Sources: Motor vehicle exhaust and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit NOₓ and VOC that help form O₃. Sunlight and hot weather cause O₃ to form in harmful concentrations in the air (EPA).

Carbon Monoxide

Description: Carbon monoxide (CO) is a colorless, practically odorless, and tasteless gas or liquid. It results from incomplete oxidation of carbon in combustion.

Health Effects: At low concentrations, CO can cause fatigue in healthy people and chest pain in people with heart disease. At higher concentrations CO can cause impaired vision and coordination, headaches, dizziness, confusion, and nausea, and flu-like symptoms. Acute effects are due to the formation of carboxyhemoglobin in the blood, which inhibits oxygen intake. At moderate concentrations, angina, impaired vision, and reduced brain function may result. At higher concentrations, CO exposure can be fatal.

Sources: Incomplete oxidation during combustion in gas ranges and unvented gas or kerosene heaters may cause high concentrations of CO in indoor air. Worn or poorly adjusted and maintained combustion devices (e.g., boilers, furnaces) can be significant sources. Auto, truck, or bus exhaust from roads or parking areas can be a source (EPA).

Oxides of Nitrogen

Description: Oxides of nitrogen (NOₓ) is the generic term for a group of highly reactive gases, all of which contain nitrogen and oxygen in varying amounts. NOₓ contributes to other pollution problems, including a high concentration of fine particulate matter, poor visibility, and acid deposition. NO₂, a reddish-brown gas, and nitric oxide, a colorless, odorless gas, are formed from fuel combustion under high temperature or pressure. NOₓ is a primary component of the photochemical smog reaction.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

Health Effects: \(\text{NO}_2 \) decreases lung function and may reduce resistance to infection.

Sources: Nitrogen oxides form when fuel is burned at high temperatures, as in a combustion process. The primary manmade sources of \(\text{NO}_x \) are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuels. \(\text{NO}_x \) can also be formed naturally.

Sulfur Dioxide

Description: Sulfur dioxide (\(\text{SO}_2 \)) is a colorless, irritating gas formed primarily from incomplete combustion of fuels containing sulfur. Industrial facilities also contribute to gaseous \(\text{SO}_2 \) levels in the Basin.

Health Effects: \(\text{SO}_2 \) irritates the respiratory tract, can injure lung tissue when combined with fine particulate matter, and reduces visibility and the level of sunlight.

Sources: According to the EPA, in California, the largest emission sources of \(\text{SO}_2 \) are from fossil fuel combustion, emissions from non-road equipment, and industrial processes.

Particulate Matter

Description: Particulate matter is the term used for a mixture of solid particles and liquid droplets found in the air.

Health Effects: Coarse particles can accumulate in the respiratory system and aggravate health problems such as asthma. The EPA’s scientific review concluded that fine particles at concentrations that extend well below those allowed by the current \(\text{PM}_{10} \) standards, which penetrate deeply into the lungs, are more likely than coarse particles to contribute to the health effects listed in a number of recently published community epidemiological studies. These health effects include premature death, increased hospital admissions, and emergency room visits (primarily the elderly and individuals with cardiopulmonary disease); increased respiratory symptoms and disease (children and individuals with cardiopulmonary disease such as asthma); decreased lung functions (particularly in children and individuals with asthma); and alterations in lung tissue and structure and in respiratory tract defense mechanisms.

Sources: Coarse particles (larger than 2.5 microns or \(\text{PM}_{10} \)) come from a variety of sources, including windblown dust and grinding operations. Fine particles (less than 2.5 microns, or \(\text{PM}_{2.5} \)) often come from fuel combustion, power plants, diesel buses, and trucks. Fine particles can also be formed in the atmosphere through chemical reactions.

3.10.1.3 Climate Change and Greenhouse Gases

Greenhouse gases (GHG) that contribute to global climate change are carbon dioxide (\(\text{CO}_2 \)), methane (\(\text{CH}_4 \)), nitrous oxide (\(\text{N}_2\text{O} \)), hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3), and hydrofluorinated ethers (HFE). In response to Executive Order S-3-05 (June 2005), which declared California’s particular vulnerability to climate change, the California Global Warming Solutions Act of 2006, Assembly Bill 32 (AB 32), was signed into effect on September 27, 2006. In passing the bill, the California Legislature found that:
“Global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems” (California Health & Safety Code, Sec. 38500, Division 25.5, Part 1).

Almost 90 percent of the total GHG emissions in the 1990 inventory were in the form of CO₂ (ARB, 2007). Emissions of CO₂ occur largely from combustion of fossil fuels. Other GHG emissions such as methane and nitrous oxide are also tracked by State inventories but occur in much smaller quantities. The global warming potential of methane and nitrous oxide are 21 and 310 times that of CO₂, respectively. When quantifying GHG emissions, the different global warming potentials of GHG pollutants are usually taken into account by normalizing their rates to a CO₂ equivalent emission rate (CO₂e). AB 32 required CARB to adopt a statewide GHG emissions limit for 2020 based on the 1990 emissions level. ARB staff recommended that the Board approve 427 million metric tons of carbon dioxide equivalent (MMT CO₂e) as the total statewide aggregated GHG 1990 emissions level and 2020 emissions limit (ARB, 2007). This recommendation was approved by the Board on December 6, 2007. ARB staff estimated the 2020 “business-as-usual” emissions level as 596 MMT CO₂e, effectively establishing California’s emission reduction goal at 169 MMT CO₂e.

California’s greenhouse gas emissions are large in a global context and growing over time (ARB, 2007). By 2004, the State’s GHG emissions had grown to approximately 484 MMT CO₂e or roughly one percent of the 49,000 MMT CO₂e emitted globally (IPCC, 2007). Statewide emissions of greenhouse gases in 1990 and 2004 are summarized in Table 3.10-3. Emission sources are broken out into seven major categories: transportation, electricity generation, industrial, residential, agriculture, commercial, and forestry.

<table>
<thead>
<tr>
<th>Sector</th>
<th>1990</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gross Emissions</td>
<td>MMT CO₂e</td>
</tr>
<tr>
<td>Agriculture</td>
<td>23.4</td>
<td>5%</td>
</tr>
<tr>
<td>Commercial</td>
<td>14.4</td>
<td>3%</td>
</tr>
<tr>
<td>Electricity Generation</td>
<td>110.6</td>
<td>26%</td>
</tr>
<tr>
<td>Forestry (excluding sinks)</td>
<td>0.2</td>
<td><1%</td>
</tr>
<tr>
<td>Industrial</td>
<td>103.0</td>
<td>24%</td>
</tr>
<tr>
<td>Residential</td>
<td>29.7</td>
<td>7%</td>
</tr>
<tr>
<td>Transportation</td>
<td>150.7</td>
<td>35%</td>
</tr>
<tr>
<td>Forestry Sinks</td>
<td>-6.7</td>
<td>--</td>
</tr>
</tbody>
</table>

Source: CARB, 2007

36 The remaining 1.3 MMT CO₂e and 16.0 MMT CO₂e for 1990 and 2004, respectively, are from unspecified fuel combustion and ODS substitute use, which is not attributed to an individual sector. Percents may not total 100 due to rounding.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

3.10.2 Environmental Consequences

Effects from emission of criteria pollutants and odors during construction and operation, from greenhouse gases, and from cumulative activities are described below.

3.10.2.1 Methodology

Air quality impacts from the proposed project were determined by evaluating emissions and odors from construction, operation, greenhouse gasses, and cumulative activities.

Short-Term

Project emissions of criteria pollutants would occur over a nine month construction period. In order to quantify construction emissions, construction data from the project applicant were obtained and reasonable assumptions were made to simulate realistic construction activities. Emissions were estimated using the URBEMIS2007 Version 9.2.4 computer program.

Construction-related emissions can be distinguished as either onsite or offsite. Onsite emissions generated during construction principally consist of exhaust emissions from the operation of heavy-duty construction equipment, fugitive dust (as PM$_{10}$ and PM$_{2.5}$) from disturbed soil, and VOC emissions from asphalt paving and painting. Offsite emissions during construction consists of exhaust emissions and entrained paved road dust (as PM$_{10}$ and PM$_{2.5}$) from worker commute trips, material delivery trips, and haul truck material removal trips to and from the construction site. Maximum daily emissions were estimated for the Proposed Action.

Long-Term

Emissions during operation were not modeled but were estimated based on previous modeling of overall future activities resulting from implanting the LAMC 2009 Facilities Master Plan. Vehicle emissions were estimated from average daily traffic volumes by taking the maximum future number of peak hour trips expected from use of both Athletic Fields (150), dividing this number in half (75) to reflect the use of one field, and multiplying by two to reflect trips in and out of the field over the day long period.

Cumulative long-term impacts were modeled based on the expectation that the 2009 Facilities Master Plan facilities would accommodate a maximum of 15,000 enrolled students and 1,100 faculty and staff by 2015. The increase in the number of average daily trips needed to reach that level of enrollment was determined to be 5,380. The emissions associated with 5,380 ADT were derived by multiplying the ADT with an average trip length of 12 miles and by emission factors provided by SCAQMD, which are based on the CARB EMFAC2007 (version 2.3) model for on-road passenger vehicles. Table 3.10-4 presents the emission factors utilized for project build-out year, 2015.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Criteria Pollutants</th>
<th>Greenhouse Gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor (lb/mile)</td>
<td>VOC</td>
<td>NO$_X$</td>
</tr>
<tr>
<td>0.00066355</td>
<td>0.00060188</td>
<td>0.00614108</td>
</tr>
</tbody>
</table>
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

Greenhouse Gases

GHG emissions for the project were derived by factoring emissions from the total LAMC 2009 Facilities Master Plan. GHG emissions from this plan were estimated using the latest available data and protocols. Global warming potentials (GWP) for non-CO$_2$ greenhouse gases were taken from the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (SAR), reprinted in Table C.1 of the California Climate Action Registry (CCAR) General Reporting Protocol (GRP) Version 3.1 (CCAR, 2009). The CCAR GRP Version 3.1 was used as the basis for quantifying GHG emissions from electricity and natural gas. Guidance from the California Energy Commission (CEC) was used for quantifying the embodied energy associated with water consumption and wastewater generation. Estimates from the EPA were used to determine GHG emissions from landfilling mixed municipal solid waste. URBEMIS2007 was used to estimate maximum daily emissions of CO$_2$ in pounds per day from construction activities, which were amortized over the life of the project and added to operation emissions in accordance with SCAQMD procedures. GHG emissions of CO$_2$ and CH$_4$ from vehicular traffic during project operation were estimated by multiplying the ADT by an average trip length of 12 miles and by the emission factors (lb/mile) provided by SCAQMD, which are based on the CARB EMFAC2007 model for on-road passenger vehicles. The emissions from CH$_4$ were converted to CO$_2$e using the CH$_4$ global warming potential of 21.

Cumulative Impact Assessment

Cumulative short-term and long-term emissions were determined by calculating the peak day emissions that would occur when the greatest number of components of the LAMC 2009 Facilities Master Plan would overlap. Cumulative GHG emissions were calculated for the entire LAMC 2009 Facilities Master Plan.

3.10.2.2 Proposed Action

Short-Term Impacts

A summary of the unmitigated peak daily short-term emissions for the proposed project is presented in Table 3.10-5 below. Peak emissions from the project are expected to occur during mass grading activities. None of these emissions would exceed SCAQMD standards.

37 For more details regarding the procedures used, see Los Angeles Mission College, July 2009, 2009 Facilities Master Plan Subsequent Environmental Impact Report, Draft, Volume I, Section 3.2.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

Table 3.10-5 Unmitigated Peak Daily Construction Emissions from the Proposed Project

<table>
<thead>
<tr>
<th>Pollutant / Activity</th>
<th>Dates</th>
<th>VOC (lb/day)</th>
<th>NO\textsubscript{X} (lb/day)</th>
<th>CO (lb/day)</th>
<th>SO\textsubscript{X} (lb/day)</th>
<th>PM\textsubscript{10} (lb/day)</th>
<th>PM\textsubscript{2.5} (lb/day)</th>
<th>CO\textsubscript{2} (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Grading</td>
<td>10/26/2009 – 12/18/2009</td>
<td>5.07</td>
<td>50.00</td>
<td>23.61</td>
<td>0.03</td>
<td>38.96</td>
<td>9.83</td>
<td>5,232.09</td>
</tr>
<tr>
<td>Fine Grading</td>
<td>12/21/2009 – 2/12/2010</td>
<td>3.22</td>
<td>26.53</td>
<td>14.14</td>
<td>0.00</td>
<td>37.84</td>
<td>8.86</td>
<td>2,371.70</td>
</tr>
<tr>
<td>Building Construction</td>
<td>2/15/2010 – 8/27/2010</td>
<td>4.58</td>
<td>18.30</td>
<td>40.22</td>
<td>0.03</td>
<td>1.44</td>
<td>1.23</td>
<td>4,941.79</td>
</tr>
<tr>
<td>Asphalt & Painting</td>
<td>8/30/2010 – 9/24/2010</td>
<td>6.06</td>
<td>20.24</td>
<td>13.59</td>
<td>0.01</td>
<td>1.68</td>
<td>1.54</td>
<td>1,979.30</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>6.06</td>
<td>50.00</td>
<td>40.22</td>
<td>0.03</td>
<td>38.96</td>
<td>9.83</td>
<td>5,232.09</td>
</tr>
<tr>
<td>Regional Thresholds</td>
<td></td>
<td>75</td>
<td>100</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
<td>N/A</td>
</tr>
<tr>
<td>Localized Thresholds</td>
<td></td>
<td>N/A</td>
<td>131</td>
<td>786</td>
<td>N/A</td>
<td>7</td>
<td>4</td>
<td>N/A</td>
</tr>
</tbody>
</table>

| Exceeds Either Threshold? | No | No | No | No | No | No | N/A |

The AQMP for the SCAB sets forth a comprehensive program that will lead the SCAB into compliance with all federal and state air quality standards. The AQMP control measures and related emission reduction estimates are based upon emissions projections for a future development scenario derived from land use, population, and employment characteristics defined in consultation with local governments. By implementing these measures, the above emissions are not expected to cause violations of the AQMP or to exceed federal or state ambient air quality standards.

Potential odor sources associated with the project include construction equipment exhaust and the application of asphalt and architectural coating during construction activities. These emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction. Odors associated with diesel exhaust would be minimized by requiring that idling of such equipment and vehicles be limited to no more than 5 minutes. Additionally, the project would be required to comply with SCAQMD Rule 204, which prevents occurrences of public nuisance air quality discharges.

Long-Term Impacts

Using the methodology described above, the project’s peak daily operational emissions are shown in Table 3.10-6. Project long-term emissions are in the form of mobile source emissions from increased vehicle trips.

Table 3.10-6 2015 Peak Daily Operational Emissions from the Proposed Project

<table>
<thead>
<tr>
<th>Peak Hour Trips</th>
<th>Derived ADT</th>
<th>NO\textsubscript{X} (lb/day)</th>
<th>VOC (lb/day)</th>
<th>CO (lb/day)</th>
<th>SO\textsubscript{X} (lb/day)</th>
<th>PM\textsubscript{10} (lb/day)</th>
<th>PM\textsubscript{2.5} (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>150</td>
<td>1.08</td>
<td>1.19</td>
<td>11.05</td>
<td>0.02</td>
<td>0.17</td>
<td>0.11</td>
</tr>
</tbody>
</table>

| SCAQMD Regional Operational Thresholds | 55 | 55 | 550 | 150 | 150 | 55 |

| Exceeds Threshold? | No | No | No | No | No | No | N/A |

U.S. Army Corps of Engineers 3-72 Recreation Outgrant for LAMC Athletic Fields DEA September 2009
The table shows that none of SCAQMD’s criteria pollutant thresholds would be exceeded by project operations. Therefore, project operations would also not violate federal or state ambient air quality standards.

The project does not propose land uses typically associated with emitting objectionable odors (i.e., wastewater treatment plants, chemical plants, composting operations, refineries, landfills, dairies). No odors are anticipated during project operation. Additionally, the project would be required to comply with SCAQMD Rule 204, which prevents occurrences of public nuisance air quality discharges.

Greenhouse Gas Impacts

Estimated GHG emissions from the project are shown in Table 3.10-7. These emissions levels do not exceed the 3,000 MTCO₂e/yr significance threshold provided in the SCAQMD Interim CEQA GHG Significance Threshold Draft Guidance Document for non-industrial projects. The project is expected to be in compliance with plans, policies, and regulations of agencies adopted for the purpose of reducing the emissions of greenhouse gases.

Table 3.10-7 Peak Operational GHG Emissions from the Proposed Project

<table>
<thead>
<tr>
<th>Derived ADT</th>
<th>CO₂ (lb/day)</th>
<th>CH₄ (lb/day)</th>
<th>CO₂e (lb/day)</th>
<th>CO₂e (MTCO₂e/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>1,983.47</td>
<td>0.11</td>
<td>1,985.78</td>
<td>237.79</td>
</tr>
</tbody>
</table>

Impact Summary

Impacts on air quality would not be significant because peak emissions from the project are expected to occur during mass grading activities which would not exceed SCAQMD standards. Potential odor sources associated with the project include construction equipment exhaust and the application of asphalt and architectural coating during construction activities. These emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction.

None of SCAQMD’s criteria pollutant thresholds would be exceeded by project operations. Therefore, project operations would also not violate federal or state ambient air quality standards. The project does not propose land uses typically associated with emitting objectionable odors (i.e., wastewater treatment plants, chemical plants, composting operations, refineries, landfills, dairies). No odors are anticipated during project operation.

The project is expected to be in compliance with plans, policies, and regulations of agencies adopted for the purpose of reducing the emissions of greenhouse gases.

Cumulative Impact

Cumulative impacts are analyzed for short-term and long-term emissions of criteria pollutants and of greenhouse gases from the proposed project in conjunction with other projects being planned in the LAMC 2009 Facilities Master Plan.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

Short-Term

The various project phases and approximate construction dates of these projects are shown in Table 3.10-8.

Table 3.10-8 Construction Projects Planned in the LAMC 2009 Facilities Master Plan

<table>
<thead>
<tr>
<th>Construction Project Phase Number</th>
<th>Construction Project</th>
<th>Construction Commencement</th>
<th>Construction Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Health, Fitness, & Athletics Building b</td>
<td>06 /2007</td>
<td>8 / 2009</td>
</tr>
<tr>
<td>2</td>
<td>Family & Consumer Studies with Bookstore b</td>
<td>9 / 2008</td>
<td>5 / 2010</td>
</tr>
<tr>
<td>3</td>
<td>Media Arts Center b</td>
<td>8 / 2009</td>
<td>3 / 2011</td>
</tr>
<tr>
<td>4b</td>
<td>-East Campus Central Plant b</td>
<td>12 / 2009</td>
<td>12 / 2011</td>
</tr>
<tr>
<td>5</td>
<td>Student Services & Administration Building b</td>
<td>12 / 2011</td>
<td>6 / 2013</td>
</tr>
<tr>
<td>6</td>
<td>Plant Facilities with Central Plant b</td>
<td>1 / 2013</td>
<td>6 / 2015</td>
</tr>
<tr>
<td>7a</td>
<td>Athletic Fields</td>
<td>10 / 2010</td>
<td>9 / 2010</td>
</tr>
<tr>
<td>7b</td>
<td>-Softball and Soccer Support Facility</td>
<td>10 / 2010</td>
<td>9 / 2010</td>
</tr>
<tr>
<td>7c</td>
<td>-Baseball Support Facility</td>
<td>10 / 2010</td>
<td>9 / 2010</td>
</tr>
<tr>
<td>8</td>
<td>College Programs & Activities Center</td>
<td>6 / 2014</td>
<td>6 / 2015</td>
</tr>
</tbody>
</table>

The peak daily emissions of NO\textsubscript{X}, CO, SO\textsubscript{X}, PM\textsubscript{10}, PM\textsubscript{2.5} and CO\textsubscript{2} are anticipated to occur when the following construction phases overlap in December of 2010 (shown on Table 3.10-9):

- Building Construction – Family and Consumer Studies with Bookstore
- Building Construction – Media Arts Center
- Mass Grading – Science and Math Technology Center
- Mass Grading – Athletic Fields

Table 3.10-9 Unmitigated Cumulative Peak Daily Construction Emissions from LAMC 2009 Facilities Master Plan Projects

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>Phase</th>
<th>NO\textsubscript{X} (lb/day)</th>
<th>CO (lb/day)</th>
<th>SO\textsubscript{X} (lb/day)</th>
<th>PM\textsubscript{10} (lb/day)</th>
<th>PM\textsubscript{2.5} (lb/day)</th>
<th>CO\textsubscript{2} (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family & Consumer Studies</td>
<td>Building Construction</td>
<td>11.61</td>
<td>10.88</td>
<td>0.01</td>
<td>0.75</td>
<td>0.67</td>
<td>1,535.91</td>
</tr>
<tr>
<td>Media Arts</td>
<td>Building Construction</td>
<td>10.37</td>
<td>7.91</td>
<td>0.00</td>
<td>0.68</td>
<td>0.61</td>
<td>1,246.71</td>
</tr>
<tr>
<td>Science & Math Technology Center</td>
<td>Mass Grading</td>
<td>29.74</td>
<td>15.44</td>
<td>0.00</td>
<td>13.00</td>
<td>3.77</td>
<td>2,763.75</td>
</tr>
<tr>
<td>Athletic Fields</td>
<td>Mass Grading</td>
<td>50.00</td>
<td>23.61</td>
<td>0.03</td>
<td>38.96</td>
<td>9.83</td>
<td>5,232.09</td>
</tr>
<tr>
<td>Peak Daily Emissions</td>
<td></td>
<td>101.72</td>
<td>57.84</td>
<td>0.04</td>
<td>53.39</td>
<td>14.88</td>
<td>10,778.46</td>
</tr>
<tr>
<td>SCAQMD Regional Thresholds</td>
<td></td>
<td>100</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
<td>N/A</td>
</tr>
</tbody>
</table>
The peak daily emissions of VOCs are anticipated to occur when the following construction phases overlap in October of 2011 (shown on Table 3.10-10):

- Asphalt and Painting – Science and Math Technology Center
- Asphalt and Painting – Eldridge Avenue Streetscape Improvements

Table 3.10-10 Unmitigated Cumulative Peak Daily Construction Emissions, VOC

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>Phase</th>
<th>VOC (lb/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science & Math Technology Center</td>
<td>Asphalt & Painting</td>
<td>56.32</td>
</tr>
<tr>
<td>Eldridge Ave Streetscape Improvements</td>
<td>Asphalt & Painting</td>
<td>2.57</td>
</tr>
<tr>
<td>Peak Daily Emissions</td>
<td></td>
<td>58.89</td>
</tr>
<tr>
<td>SCAQMD Regional Thresholds</td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

Long-Term

Peak cumulative daily emissions during operations would occur after full build-out of the LAMC 2009 Facilities Master Plan. These emissions are shown in Table 3.10-11. The table shows that, even at full build-out, cumulative long-term emissions would not exceed regional thresholds.

Table 3.10-11 2015 Peak Daily Operational Emissions from LAMC 2009 Facilities Master Plan Projects

<table>
<thead>
<tr>
<th>Increase in Students</th>
<th>Increase in Staff</th>
<th>Derived ADT</th>
<th>NO\textsubscript{X}</th>
<th>VOC</th>
<th>CO</th>
<th>SO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>Exceeds Threshold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,900</td>
<td>550</td>
<td>5,380</td>
<td>42.84</td>
<td>38.86</td>
<td>396.47</td>
<td>0.69</td>
<td>5.98</td>
<td>3.88</td>
<td>No</td>
</tr>
<tr>
<td>SCAQMD Regional Operational Thresholds</td>
<td></td>
<td></td>
<td>55</td>
<td>55</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
<td>No</td>
</tr>
</tbody>
</table>

Since maximum emissions would be 50 lb/day or less for all pollutants, no impact on federal or state ambient air quality standards is expected to occur.

Greenhouse Gas Impacts

Cumulative GHG emissions from the LAMC 2009 Facilities Master Plan are estimated below.

GHGs from Electric Energy

Baseline electric energy demand for LAMC is estimated at 5,214 MWh annually based on metered data received from Los Angeles Department of Water and Power (LADWP) for the period of record beginning April 2008 and ending March 2009. Under a business as usual (BAU) growth scenario, future electric energy demand at full build out of the Project is estimated at 7,449 MWh/yr.
Therefore, the BAU scenario projects a net increase in electricity consumption associated with the project of 2,235 MWh/yr with a corresponding increase in GHG emissions of 737 MTCO$_2$e/yr.

GHGs from Natural Gas

Baseline natural gas usage for LAMC is estimated at 8,132 MMBtu annually based on metered data for the 2007 calendar year. Under a BAU growth scenario, future natural gas demand at full build out of the Project is estimated at 11,617 MMBtu/yr. Therefore, the BAU scenario projects a net increase in natural gas use associated with the Project of 3,485 MMBtu/yr with a corresponding increase in GHG emissions of 185 MTCO$_2$e/yr.

GHGs from Water/Wastewater

Baseline water use for LAMC is estimated at 13 MG/yr based on utility invoices for the period of record beginning July 2008 and ending December 2008. Applying the typical embodied energy factor given by the CEC yields 135 MWh/yr of electric energy required for potable water supply and conveyance, treatment, and distribution to LAMC. Under a BAU growth scenario, future water demand is estimated at 19 MG/yr with embodied energy of 192 MWh/yr. Therefore, the BAU scenario projects a net increase in energy use for water supply and conveyance, treatment, and distribution associated with the Project of 58 MWh/yr with a corresponding increase in GHG emissions of 19 MTCO$_2$e/yr.

Baseline wastewater disposal from LAMC is estimated at 4 MG/yr based on utility invoices for the period of record beginning August 2008 and ending December 2008. Applying the typical embodied energy factor given by the CEC yields 9 MWh/yr of electric energy required for treatment of wastewater derived from LAMC. Under a BAU growth scenario, future wastewater disposal is estimated at 9 MG/yr with embodied energy of 14 MWh/yr. Therefore, the BAU scenario projects a net increase in energy use for wastewater treatment associated with the project of 4 MWh/yr with a corresponding increase in GHG emissions of 1 MTCO$_2$e/yr.

GHGs from Construction

SCAQMD advises that short-term GHG emissions should be amortized over the life of the project which will be 30 years. The annual CO$_2$ construction emissions from each of the 10 construction projects shown in Table 3.10-5 were added together to yield 3,611.51 tons of cumulative CO$_2$ emissions from all project construction. 3,611.51 tons amortized throughout the 30-year life of the project yields 120.38 tons of CO$_2$ per year.

GHGs from Operations – Transportation

The project’s peak daily and annual operational GHG emissions from transportation were calculated using the methodology described in Section 3.10.2.1. The results are shown in Table 3.10-12. CH$_4$ emissions were converted to carbon dioxide equivalents (CO$_2$e) using its global warming potential of 21, then added to CO$_2$ emissions for total CO$_2$e.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.10 Air Quality

Table 3.10-12 2015 Peak Operational GHG Emissions

<table>
<thead>
<tr>
<th>Derived ADT</th>
<th>CO₂ (lb/day)</th>
<th>CH₄ (lb/day)</th>
<th>CO₂e (lb/day)</th>
<th>CO₂e (MTCO₂e/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,380</td>
<td>71,140.50</td>
<td>3.82</td>
<td>71,220.80</td>
<td>8,528.58</td>
</tr>
</tbody>
</table>

The cumulative net increase in GHG emissions associated with the project under a business as usual scenario [972 electricity, natural gas and water + 120.38 amortized construction + 8,528.58 transportation] would be 9,350.96 MTCO₂e/yr. This emissions level exceeds the 3,000 MTCO₂e/yr significance threshold provided in the SCAQMD Interim CEQA GHG Significance Threshold Draft Guidance Document for non-industrial projects. It is important to note that the BAU scenario represents a worst-case scenario. LAMC is committed to utilizing energy efficiency, renewable energy, and alternative transportation in order to abate GHG emissions to the fullest extent feasible.

3.10.2.3 Development of LACCD Property Only

Under this alternative, there would be short-term and long-term GHG impacts related to air quality associated with the development of the LACCD portion of the Athletic Fields. Peak hour and maximum daily impacts would be similar to those associated with the proposed site since peak hour and maximum daily short-term and long-term activities would be similar.

3.10.2.4 No Action

Under this alternative, there would be no short-term air quality impacts associated with the development of the Athletic Fields. There would still be long-term air quality impacts associated with longer trips by LAMC students to remote athletic fields. GHG emissions from construction would be eliminated, and GHG emissions from vehicle trips to remote fields would continue. There would still be exposure to long-term impacts to all receptors in the area from short-term and long-term activities from other projects.
3.11 Soils and Geology

3.11.1 Affected Environment

3.11.1.1 Regional Geologic Setting

Southern California is a seismically active area dominated by numerous active faults that have formed along a tectonic plate boundary known as the San Andreas transform zone. The San Andreas transform zone, which separates the North American plate to the east from the Pacific plate to the west, is dominated by northwest-trending, right lateral, strike-slip faults of the San Andreas Fault system. In the Los Angeles Basin and adjacent transverse ranges, the right lateral strike-slip environment of the San Andreas Fault system is substantially altered by a north-south component of compression. This north-south directed compression, which is in part caused by a convergent left bend of the San Andreas fault, is generally expressed by thrust, reverse or oblique slip faults, and folds that trend approximately east-west.

The proposed project lies within the Transverse Ranges Geomorphic Province. As a result of regional compression along the plate boundary, the mountains, valleys, and faults within this tectonically active region generally follow a similar east-west trending fabric. Extensive faulting in the province has resulted in numerous, irregular fault-bounded blocks.

The proposed project is situated within the transition between the southern margin of the San Gabriel Mountains and the northern margin of the San Fernando Valley. To the north and northeast of the site, the San Gabriel Mountains rise abruptly from the valley floor, similar to the Santa Susanna Mountains further to the west. South of the site, the gradient drops off gently down into the San Fernando Valley (Figure 3.11-1, Geologic Map).

3.11.1.2 General Site Geology

The proposed project is situated on a gently sloping alluvial fan surface extending southward from the San Gabriel Mountains range front. The site topography slopes to the southeast toward the Pacoima Wash along Eldridge Avenue and on the proposed Athletics Fields. The topography ranges from an elevation of approximately 1310 to 1350 feet MSL on the Athletics Field area. This area is underlain by localized fills, surficial stream terrace and active channel deposits, and alluvial fan deposits of varying age. At depth, the sites are underlain by sandstones, conglomerates, siltstones, and mudstones associated with the Saugus Formation, which overlies the crystalline basement rock. The aerial distribution of the surficial materials within the general project area is shown on the Geologic Map, and descriptions of the mapped units are presented on the Geologic Map legend (Figure 3.11-1, Geologic Map).38 39

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.11 Soils and Geology

3.11.1.3 Soil Conditions

Previous geotechnical investigations were performed by Lowney Associates (Lowney) in 200340 and Wilson Geosciences (Wilson) in 200341 on the LAMC Main Campus and Athletics Fields sites. The investigations indicated that the Athletics Fields site consist of a surface with dumped piles of debris with relatively loose silty sands with gravel and cobbles up to depths of 12 feet.

Underlying the surficial fills, the alluvial fan deposits consist of medium dense silty sand and stiff to very stiff sandy silts and dense to very dense sands. Geophysical surveys performed by Wilson suggest the contact between the fan deposits and underlying Saugus Formation range between approximately 55 to 74 feet below ground surface (bgs) and that the Saugus Formation continues to a depth of at least 120 to 140 feet bgs.

A geotechnical investigation performed by Lowney in 2004 on the LAMC Health, Fitness & Athletics Complex encountered loose to medium dense, silty sand alluvial deposits approximately 3 to 5 feet thick and a localized area of undocumented fills. The surficial deposits are underlain by alluvial fan deposits consisting of medium dense to very dense, fine to coarse sand and silty sand to sandy silt, with interbedded gravels and cobbles. Geophysical surveys performed by Wilson at the LAMC Health, Fitness, & Athletics Complex in 2003 suggest that the contact between the fan deposits and underlying Saugus Formation range between approximately 55 to 74 feet bgs. Crystalline basement rock underlies the site at depths of at least 120 to 140 feet.42 43 44 45 46

Groundwater was not encountered within any of the previous investigations at the Project area to the maximum depths explored (51.5 feet and 70 feet bgs, respectively). Based on historic groundwater data within the general project area, the CGS OFR 98-06 has estimated that the groundwater is about 70 to 90 feet deep at the Athletics Complex, depending on high groundwater fluctuations. Based on the subsurface conditions and seasonal conditions, a slightly higher groundwater table and/or localized perched zones or seeps should be anticipated at the project.47

47 California Geological Survey (CGS) formerly California Division of Mines and Geology, 1998. “Seismic Hazard Evaluation of the San Fernando 7.5-Minute Quadrangle, Los Angeles County, California.” CDMG OFR 98-06.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.11 Soils and Geology

Figure 3.11-1 Geologic Map
Blank Page for Back of Figure
3.11.1.4 Faults and Seismicity

The Transverse Ranges Geomorphic Province is known to be seismically active and characterized by numerous east-west trending thrust, reverse, or oblique slip faults and folds. Several historic earthquakes have occurred previously within the immediate project vicinity, the two most notable being the 1994 Northridge (Mw=6.7) and the 1971 Sylmar (Mw=6.6) earthquakes. As a result of the 1994 Northridge earthquake, several “blind” thrust faults (buried faults that do not cause surface rupture) were identified beneath the San Fernando Valley. Given the nature of faulting in the Northridge earthquake, most of the damage resulted from strong seismic shaking; surface rupture was not a significant hazard. Unlike the Northridge earthquake, the Sylmar earthquake caused significant surface rupture across the valley and ultimately resulted in the formation of the Alquist-Priolo Earthquake Fault Zones (APEFZ) by the CGS (previously the California Division of Mines and Geology). The APEFZ was formed to delineate zones of earthquake-induced, Holocene-age (last 11,000 years) surface rupture and, as described in the CGS Special Publication 42, to prevent the construction of buildings used for human occupancy on the surface trace of active faults.48 Earthquake fault zones, as designated by the APEFZ Act within the vicinity of the project sites, are depicted in Figure 3.11-2, Alquist-Priolo Earthquake Fault Zone. As shown on Figure 3.11-2, the proposed athletic fields are not located within such a fault zone.

3.11.2 Environmental Consequences

3.11.2.1 Methodology

Geology and soils hazards associated with the development of projects pursuant to the LAMC Facilities Master Plan are analyzed in this section. Impacts are determined by reviewing geologic and geotechnical references and maps developed for the region and site.

3.11.2.2 Proposed Action

Liquefaction

The proposed Athletic Fields area is located in a zone identified as “Areas where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Codes Section 2693(c) would be required.”49 This indicates that an investigation is required to evaluate liquefaction in these portions of the project site prior to final design and construction. The Athletic Fields are located within the Pacoima Wash which consists of loose sands and could experience shallow groundwater. As a result, liquefaction at the Athletics Fields may have the potential to occur. However, implementation and compliance with state and local building codes, the CBC, the City of Los Angeles Building Code (Section 7011.3), and the LACCD regulations, would reduce the effects of liquefaction.

49 State of California, 1999, Seismic Hazard Zones, San Fernando Quadrangle.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.11 Soils and Geology

Landslides

The term “landslide” describes a wide variety of processes that result in the downward and outward movement of slope-forming materials including rock, soil, artificial fill, or a combination of these. The materials may move down slopes by falling, toppling, sliding, spreading, or flowing. The same site conditions that are conducive to seismically induced landslides also are conducive to landslides associated with high rainfall or a rise in groundwater and involve slopes underlain by both surficial deposits and bedrock. Steep slopes are present adjacent to the eastern portion of the site, within the Pacoima Wash. These slopes are subject to slope instability from erosion and rises in groundwater. Due to the height and instability of this slope and the potential effects of seismic shaking during an earthquake event, the potential for landslides may have effects on the project in this area. However, with implementation and compliance with state and local building codes, the CBC, the City of Los Angeles Building Code (Section 7011.3), and the LACCD regulations, would reduce the effects of landslides.

Seiche

A seiche is an oscillation of a body of water in an enclosed or semi-enclosed basin, such as a reservoir, harbor, lake, or storage tank, resulting from earthquakes or other large environmental disturbances. The nearby Pacoima Reservoir, approximately 2 miles to the northwest, could be subject to a seiche during a seismic event. Overtopping of the Pacoima Dam would result in discharge into the Pacoima Wash drainage and into the Lopez Dam flood control system, downslope to the southeast from the project sites. A portion of the proposed Athletic Field site is situated within the limits of the Lopez Canyon Flood Control Debris Basin inundation area and within the 100-year flood plain. Therefore, a seiche and the associated flooding are considered an adverse impact to seismic hazard for the proposed project.\(^{50} \)\(^{51} \) Since the fields would not be used during rainy conditions when the probability of these conditions would be highest, and since LAMC would implement measures to warn the public to refrain from using the site during these conditions, these potential effects can be minimized.

3.11.2.3 Impact Summary

Impacts on soils and geology would not be significant because implementation and compliance with state and local building codes, the CBC, the City of Los Angeles Building Code (Section 7011.3), and the LACCD regulations, would reduce the effects of liquefaction and landslides; and LAMC would implement measures to warn the public to refrain from using the site during rainy conditions to reduce potential effects from a seiche.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.11 Soils and Geology

Figure 3.11-2 Alquist-Priolo Earthquake Fault Zone
3.11.2.4 Cumulative Impacts

Geologic and soils impacts have the potential to combine with impacts of related past, present, and foreseeable future projects to result in cumulative impacts to geology and soils in certain areas. For example, cumulative impacts relating to fault rupture, ground shaking, liquefaction, landsliding, seiche, and expansive soils would generally be similar to what is described for project specific impacts; however, with the implementation of proper engineering practices prior to and during site design, grading, and construction, as specified in site- and project-specific geotechnical recommendations for this project and others, there would be no cumulative impacts associated with development of the site.

3.11.2.5 Development of LACCD Property Only

The alternative would have similar impacts involving geology and soils as the proposed project. Liquefaction, landslides, and seiches from seismic events, shallow groundwater and potentially liquefiable loose sands would continue to be present at the ACOE site; however revetments would be put in place to minimize bank erosion. Since there would be a lower probability of people being located on the site during seismic events, effects would be similar to but somewhat less than those of the Proposed Project alternative.

3.11.2.6 No Action

This alternative would result in a continuing potential of adverse impacts at the site since impacts from earthquakes, seiches, and flooding would erode the Athletic Fields site, which are impacts that would be greater than those of the Proposed Project alternative. The probability of people being located at the site during these events would be lower, which would reduce adverse effects compared to the Proposed Project.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.11 Soils and Geology
3.12 Erosion and Sedimentation

3.12.1 Affected Environment

Soil erosion affects stormwater quality and can damage surface structures such as roads. A geotechnical investigation performed by Leighton Consulting, Inc. (Leighton) in 2005 evaluated two washouts that occurred along the access roadway to the proposed Athletics Fields site. According to the Leighton study, the two washouts resulted from erosion of the access road embankment due to swift flowing water scouring the two areas and there was no visible evidence of bank instability resulting from slope instability or rapid drawdown failures. The study concluded that the washouts were attributed to inadequate embankment armoring and undermining of concrete surface protection.

3.12.2 Environmental Consequences

3.12.2.1 Methodology

Erosion and sedimentation impacts associated with the development of the proposed project are analyzed in this section. Impacts are determined by reviewing geologic and geotechnical references and maps developed for the region and site; and evaluating the likelihood of exposing people and structure to geologic hazards.

3.12.2.2 Proposed Action

Short-Term

The proposed project is underlain by loose alluvial soils consisting of loosely consolidated to consolidated gravels, sands, and clay derived from the surrounding topographic highlands. The project would plant grass on the fields to prevent surface erosion and would plant native vegetation along the wash bank to reduce erosion of the bank. The project includes placement of revetments and use of best management practices during construction. These practices will reduce the adverse effects of periodic Pacoima Wash active drainage events. Implementation of the proposed project will involve grading, excavation, trenching, temporary stockpiling, and construction work in areas of varying terrain. Standard construction procedures and best management practices (BMPs) implemented in conjunction with the SWPPP required under the state of California NPDES construction permit will minimize potential for erosion and siltation during construction.

Long-Term

Planting of vegetation on the developed surface and along the banks, proper revetment design, and the above mentioned planning actions will reduce or eliminate runoff during operation of the fields. Sources of pollutants will be controlled, and contaminated stormwater run-off will be treated prior to exiting the site and entering any local water body. Implementation of NPDES requirements in the SWPPP and WQMP will reduce potential impacts that would create substantial soil erosion.

Impact Summary

Impacts from erosion and sedimentation would not be significant because use of best management practices would reduce the adverse effects of periodic Pacoima Wash active drainage events. Standard construction procedures and best management practices (BMPs) implemented in conjunction with the SWPPP required under the state of California NPDES construction permit would minimize the potential for erosion and siltation during construction.

Planting of vegetation on the developed surface and along the banks, proper revetment design, and the above mentioned planning actions would reduce or eliminate runoff during operation of the Athletic Fields. Implementation of NPDES requirements in the SWPPP and WQMP will reduce potential impacts that would create substantial soil erosion.

Cumulative Impacts

Erosion and sedimentation impacts have the potential to combine with impacts of related past, present and foreseeable future projects to result in cumulative impacts to erosion and sedimentation in certain areas. With the implementation of BMP’s, proper engineering practices prior to and during site design, grading, and construction, the development of the proposed project in combination with the LACCD parcel, the cumulative impact would not be significant.

3.12.2.3 Development of LACCD Property Only

This alternative would have effects similar to those of the proposed project involving erosion and sedimentation since the same construction and bank protection measures would be implemented even if the ACOE Property were not developed. Since no surface improvements would be made at the ACOE parcel, erosion and sedimentation potential would continue to be present at the ACOE Athletics Fields site. Therefore, impacts would be somewhat greater than those of the Proposed Project alternative.

3.12.2.4 No Action

The No Project Alternative would have the same impacts to erosion and sedimentation as existing conditions. No new developments would occur on site. Sedimentation from the site would continue. Impacts would be greater than those of the Proposed Action alternative.
3.13 Mineral Resources

3.13.1 Affected Environment

Soils in the project area are characterized by Pleistocene terrace deposits overlain by Holocene alluvium. The project site is underlain by these dense, reddish alluvial soils extending to depths of up to 60 feet below the ground surface along the Pacoima Wash. The Pleistocene material consists of poorly consolidated continental gravels, sands, and clay derived from basement rocks that form the northern boundary of the Sylmar Basin.

Previous geotechnical investigations were performed by Lowney Associates (Lowney) in 2003 and Wilson Geosciences (Wilson) in 2003 on the LAMC Main Campus and Athletics Fields sites. The investigations indicated that the Athletics Fields site consist of a surface with dumped piles of debris with relatively loose silty sands with gravel and cobbles up to depths of 12 feet. The Athletics Fields site is located within the Pacoima Wash area and is designated MRZ-2. Classification of land within the state of California takes place according to a priority list that was established by the State Mining and Geology Board. MRZ-2 is classified as areas that contain adequate information to indicate that significant mineral deposits are present or are judged to have a high likelihood for their presence. Sand and gravel from the Pacoima Wash area is of mining quality. The proposed Athletics Fields area is currently undeveloped and not utilized for extraction of any mineral resources.

3.13.2 Environmental Consequences

3.13.2.1 Methodology

The approach used to determine potential impacts regarding mineral resources involved:

- Reviewing local and state maps depicting areas identified to contain mineral resources
- Determining whether, or to what degree, the project would potentially result in the permanent loss of or loss of access to, a mineral resource that is located in a known or potential mineral resource area.
- Determining whether the mineral resource is of regional or statewide significance, or is noted as being of local importance.

3.13.2.2 Proposed Action

Loss of Availability of Known Mineral Resource

The Athletics Fields site within the Pacoima Wash is identified as a MRZ-2 which contains mineral resources such as sand and gravel. The grading materials that would potentially include sand and gravel would remain on site to be used for other components of the proposed project. The proposed project would prevent future mining of the sand and gravel resources. However, the

55 City of Los Angeles Planning Department, General Plan Framework EIR, Figure GS-1 – Areas Containing Significant Mineral Deposit in the City of Los Angeles, February 1994.
quantity of mineral resources on the site is not considered substantial considering the quantities that would remain available in the vast Pacoima Wash area.

Loss of Availability of Locally Important Resource

No known locally important mineral resources were identified in the project area. Therefore, the project would have no impact on the availability of a locally important mineral resource.

Impact Summary

Impacts on mineral resources would not be significant because the quantity of mineral resources on the project site is not considered substantial relative to the quantities that would remain available in the Pacoima Wash. Furthermore, there are no known locally important mineral resources present in the project area.

Cumulative Impacts

The SIBL ballfields and the proposed athletic fields on the LACCD parcel are located along the Pacoima Wash in an area that may have sand and gravel resources. Other projects are being developed in southern California that are also located in areas that have known mineral resources. As a result, development of the proposed project, together with other development within local MRZ-2 zones would reduce the cumulative availability of sand and gravel resources. Since the area near the proposed project is already extensively developed, there is not a great local need for these resources at this time. Regional needs are adequately handled by existing quarries along the San Gabriel River and elsewhere throughout southern California. Therefore, there would be no appreciable loss of availability to mineral resources from these cumulative activities.

3.13.2.3 Development of LACCD Property Only

The development of LACCD Property alternative would not result in potential adverse impacts to mineral resources at the ACOE Property, since those resources would continue to be available. This alternative would reduce the area impacted by the loss of availability of a known mineral resource, the loss of mineral resources available on the proposed project site is minor compared to the aggregate mineral resources present in the region. Impacts would be less than those of the Proposed Action alternative.

3.13.2.4 No Action

The No Project alternative would not result in adverse impact to mineral resources because it would not reduce the risk of loss of availability of a known mineral resource. Impacts would be less than those of the Proposed Project alternative.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.14 Land Use and Master Plan Compatibility

3.14 Land Use and Master Plan Compatibility

This analysis describes the affected environment in the project area, the methodology used to assess impacts, and the anticipated environmental consequences that would result from implementation of the Proposed Action, Development of the LACCD Property Only, and No Action alternatives.

3.14.1 Affected Environment

The proposed site is vacant land located west of the Pacoima Wash and north of the Harding Street intersection at Maclay Street. The site is bounded by El Cariso Golf Course to the West, the Pacoima Wash and Mountain Glen Terrace Residential Community to the east, the East Campus to the south, and a parcel set aside for drainage to the north (Figure 3.14-1 Aerial View of Project Site). Surrounding land uses include open space and recreation to the north, east, and west. Sensitive land uses include the Pacoima Wash and Mountain Glenn Terrace to the southeast, El Cariso Golf Course and Park to the west, and LifeHOUSE Maclay Healthcare Center to the south (Figure 3.14-2 Existing Land Use and Zoning Map). The parcel size is 8.2 acres and is owned by the ACOE.

The parcel is located within the Lopez Dam Basin and is classified Planning Area 1 under the Lopez Dam Basin Master Plan\(^n\). Planning Area 1 includes recreation areas to the north and west sides of Maclay Street that is designated recreation resource areas. The LACCD and ACOE parcels are zoned OS-1XL, which is a land use designation of Open Space, in the City of Los Angeles Sylmar Community Plan and Zoning Code (see Figure 3.14-2 Existing Land Use and Zoning Map).

3.14.2 Environmental Consequences

3.14.2.1 Methodology

The proposed project is analyzed in light of adopted plans, policies, and ordinances as well as compatibility with surrounding land uses within the project area.

3.14.2.2 Proposed Action

Short-Term Impacts

Access to the Sylmar Independent Baseball League (SIBL) fields may be temporarily affected due to construction of roadway improvements and development of the Athletic Fields. During the construction of the new “SIBL Way,” access to the SIBL fields would be maintained on the current or other temporary roadway. Therefore, use of the SIBL fields would continue without major interruption.

The Mountain Glenn Terrace residential community as well as the surrounding low residential neighborhood located southwest of the Athletic Fields may experience delays along Maclay Street related to construction of the fields and roadway improvements to the SIBL access road. Access delays would be reduced during project construction through implementation of the Construction Traffic Management Program.

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.14 Land Use and Master Plan Compatibility

Adjacent sensitive land uses such as the Pacoima Wash, El Cariso Golf Course and Park, LifeHOUSE Maclay Healthcare Center, the Mountain Terrace residential community may experience temporary incompatibility due to construction including higher levels of dust, noise, and traffic. These short-term impacts are further analyzed in Sections 3.10-Air Quality, 3.17-Noise, and 3.18-Traffic.

Long-Term Impacts

Development of the Athletic Fields would be a compatible land use during their operation. Development would not divide an established community since the project site consists of vacant Pacoima wash land with no development existing along its immediate borders. The roadway connecting the community with the SIBL fields would be improved and would be providing added protection for all Sylmar recreational patrons.

The land use designation for Planning Area 1 allows development of intensive recreational facilities on the designated grounds for concession, resort and quasi-public development. The proposed development of the ACOE Property as a baseball, softball, or soccer field including concessions and storage falls within the land uses prescribed in Planning Area 1 and is therefore consistent with the Lopez Dam Master Plan.

Impact Summary

Impacts on land use and master plan compatibility would not be significant because use of the SIBL fields would continue without major interruption and access delays would be reduced during project construction through implementation of the Construction Traffic Management Program; and operation of the Athletic Fields would be a compatible land use and is an acceptable use under Planning Area 1.

Cumulative Impacts

Past land use developments in the area include El Cariso Community Regional Park and Golf Course, Mountain Glen Terrace, and the SIBL ballfields. The proposed LACCD development would convert passive recreational land use to established recreational land use. Building the Athletic Fields on the ACOE site in conjunction with planned fields on the LACCD site and the existing fields on the SIBL site would have the cumulative effect of enhancing the use of this area for its planned purpose as a recreational area. Other projects outside the Athletic Fields site are planned that would intensify, but not make major changes to existing land uses. The proposed project and other future projects within ACOE Planning Area 1 would conform to the Lopez Dam Master Plan. Because no major land use changes are planned in the area, when considered with other developed, planned, or reasonably foreseeable projects, the proposed project would not result in adverse cumulative land use impacts.

3.14.2.3 Development of LACCD Property Only

Under the Development of the LACCD Property Only Alternative, the land use for which the ACOE Property is designated (Recreation) would continue to be used for passive recreational purposes, but would not be used to its fullest extent allowed by this designation. The loss of opportunity to provide recreational development of the site may put additional pressure on other land uses in the region to develop similar facilities.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.14 Land Use and Master Plan Compatibility

Figure 3.14-1 Aerial View of Project Site
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.14 Land Use and Master Plan Compatibility

Figure 3.14-2 Existing Land Use and Zoning Map
Blank Page for Back of Figure
Continuing its current land use would not cause adverse land use impacts to surrounding areas because the current land use designation of the ACOE Property as a recreational resource area is compatible with the intended recreational land use on the nearby LACCD Property. Temporary construction activities would adversely affect use of the ACOE Property for up to 9 months. Development and use of the LACCD property for Athletic Fields would not result in permanent adverse land use effects to the ACOE Property. The ACOE Property would remain designated as a recreational resource area and the College would continue to have access to the LACCD-owned portion of the Athletic Fields.

There are few remaining available parcels of vacant land in the vicinity of the College. Development will continue to encroach upon remaining sites. The cumulative effect of not developing the ACOE Property and losing other vacant areas to development would be to reduce the continued viability of athletic programs run by the College and other athletic organization in the area.

3.14.2.4 No Action

Under the No Action Alternative, no impacts to existing land uses at the Athletic Fields sites would occur because the current land uses within the proposed Project area would continue and are compatible with existing surrounding land uses.

The land uses for which the ACOE and LACCD properties are designated would continue to be used for passive recreational purposes, but would not be used to its fullest extent allowed by their designation. The loss of opportunity to provide recreational development of the sites may put additional pressure on other land uses in the region to develop similar facilities.

Since there are few remaining available parcels of vacant land in the vicinity of the College, the cumulative effect of not developing the ACOE or LACCD properties and losing other vacant areas to development would reduce the continued viability of athletic programs run by the College and other athletic organization in the area.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.14 Land Use and Master Plan Compatibility

U.S. Army Corps of Engineers

Recreation Outgrant for LAMC Athletic Fields DEA
September 2009
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.15 Economics

3.15.1 Affected Environment

The LAMC men’s baseball and women’s softball teams currently practice and play games at El Cariso Park, located adjacent to the college. The college pays an hourly fee ($14/hr and approximately $10,000 annually) for practices and games, as well as approximately $20,000 annually for various upgrades to the facility to meet intercollegiate standards. Students enrolled at LAMC are not charged to participate on teams, so the expenditure by the college is not reimbursed. Even though regular maintenance is performed by the County, it is not sufficient to meet LAMC’s needs. Therefore, in order to meet intercollegiate standards and to provide the best possible playing surface for LAMC athletes and the athletes whom they compete against, the college maintains the fields before and after each use. The labor associated with such effort is performed by LAMC students and staff, and is also not reimbursed. Demand for use of the Athletic Fields at El Cariso Park has increased dramatically over the past several years and is expected to continue to increase. This facility is used on a nightly basis by other schools and local adult leagues (usually 6-7 nights per week) with the LAMC athletic teams using the fields as many as 3-4 nights during any given week.

Local soccer facilities are scarce within the area surrounding LAMC, which creates competition for use of these fields. The LAMC men’s and women’s soccer teams have practiced and played games at Birmingham High School for the past seven years, which is located approximately 15 miles from the LAMC campus, and was the nearest available suitable facility. The college’s soccer teams plan to practice and play games at the Hansen Dam soccer complex for the 2009 season, which is located 4 miles from LAMC, but is a heavily used facility and is not ideal for intercollegiate competition. For the use of this facility, the college will pay a rental fee of $31 per hour (more than $10,000 annually) for both practices and games.

The College pays for all uniforms, equipment, and supplies associated with its athletic teams minus athletic shoes, which are paid for by the students at approximately $100 per pair of adequate shoes. Individual teams regularly engage in fund raising activities in order to pay for their shoes, but as a rule this expense is paid by students. The college or students are not reimbursed for any costs associated with uniforms, equipment, or supplies.

3.15.2 Environmental Consequences

3.15.2.1 Methodology

The economic analysis consists of a description economic effects that are associated with the project. Economic resources were analyzed using information gathered through discussions with the LAMC Athletic Director and other economic data available through the college. This analysis evaluated economic effects and benefits the project would have on the college as well as current students/student athletes. As the proposed facilities would generate no monetary revenue to the college, effects were imputed as differences in costs, convenience, and quality.

57 Personal communication with LAMC Athletic Director, June 22, 2009
58 Personal communication with LAMC Athletic Director, June 22, 2009
59 http://www.lamission.edu/athletics/wsoftball/index.html
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.15 Economics

3.15.2.2 Proposed Action

Short-Term Impacts

Direct economic impacts associated with development of the proposed athletic fields on ACOE Property would include the cost of construction (direct expenditures). Construction of the proposed athletic facilities is estimated to cost the college approximately $10 million\(^{60}\). Indirect effects would include construction-related employment created by the development of the on-campus athletic facilities. Using a direct expenditure multiplier of 2, this indirect effect is estimated to add approximately $20 million to the local economy. This effect would greatly benefit the local economy as the job growth rate recently has been negative. The direct injection of funds related to the construction costs of the on-campus facilities would provide stimulation to the local economy, and more importantly create jobs, which will provide prolonged stimulation to the local economy.

Using an employment multiplier of 2.2\(^{61}\), and assuming that 40% of the total costs will be associated with labor, wages/benefits will contribute to about 50,000 person-hours of work (80 person-years). Using these numbers, this effect would lead to the creation of 176 jobs related to the construction of the athletic facilities at LAMC. These jobs would play a large role in stimulating the economy both in the short-term and long-term.

Long-Term Impacts

Operation of the Athletic Fields would reduce costs of renting and improving/upgrading the County facilities currently used by LAMC athletic teams, as well as the time spent performing these improvements. Assuming a cost of $10 per hour, and four person-hours of work required for every game, the equivalent monetized savings in labor would be $40 per game played (approximately 40 games per season), and $1,600 annually. Assuming an expenditure of $20,000 per year to maintain the County’s facilities, and less than $20,000 per year to maintain the new facilities (as explained below); it can be assumed that this would lead to a direct savings in maintenance costs associated with the new facilities.

The proposed facilities would also reduce the travel costs and travel time for students, staff, and other participants who currently use off-campus facilities, which would be a beneficial effect. Assuming 20 student and staff trips per game, 25 soccer games per year, a standard federal rate of $0.585 per mile, and a round trip distance saved of 8 miles, the total annual savings in travel costs would be $2,340 not including the savings in trips by family members and other participants.

LAMC students would have quality and convenient facilities for both educational and athletic purposes, which would help attract potential students to these programs, therefore increasing revenue generated by enrollment. At a cost of $20 per unit and 17 units for a physical education certificate, each increase of 100 students due to the new facilities would add $34,000 to LAMC’s revenue. With the new facilities, the program is likely to attract several times this number of interested participants.

\(^{60}\) Personal communication with LAMC Athletic Director, June 22, 2009.

\(^{61}\) The workers associated with the construction of these facilities will more than likely be paid higher salaries than average salaries in the area. Therefore, a higher employment multiplier of 2.2 is used.
Operation and maintenance activities would include such things as maintaining grass fields, maintenance related to infield (dirt), dugouts, outfield fences, bleachers, bullpens etc., and would cost the college less than $20,000 as explained below. The reduced maintenance costs can be attributed to the reduced use of the LAMC facilities when compared to County facilities as well as the quality associated with the new facility. Currently the County’s facilities are used up to 6-7 days/night per week during any given week; whereas the LAMC facilities would be used up to 3-4 days/night per week during any given week. Indirect effects related to operation of the proposed on-campus athletic facilities include employment and payroll shifts. By employing staff to maintain, operate, and patrol the fields, the project would also contribute to the local economy. Assuming at least one full time equivalent staff member at $40,000 per year, and a multiplier effect of 2.2, the contribution would be at least $88,000 to the local economy. This amount does not include expenditures on materials such as fertilizer, lights, equipment, and other materials that would add a similar amount each year.

Impact Summary

Impacts on economics would not be significant because construction of the project would directly inject funds from building construction and create jobs which would stimulate the local economy. Operation of the Athletic Fields would reduce costs of renting and improving/upgrading the County facilities currently used by LAMC athletic teams, as well as the time spent performing these improvements. The proposed facilities would also reduce the travel costs and travel time for students, staff, and other participants who currently use off-campus facilities.

Cumulative Impacts

Past economically beneficial developments in the area include construction of the Lopez Dam, Mountain Glen Terrace, and LAMC (facilities approved in 2007 and proposed in 2009). The development of the proposed on-campus athletic facilities would allow current recreational facilities to become more available for use by others in the community by reducing use by LAMC students. The new availability of those facilities will help promote expected growth in the health, fitness, and athletic programs throughout the area. The proposed athletic fields would allow students to engage in discretionary recreational activities, otherwise unavailable at other local facilities due to such high demand. Assuming the project would add 700-750 hours (400-425 hours at El Cariso and 300-325 hours at Hansen Dam soccer complex) of facility time for the County facilities alone each year, and a per hour rate of approximately $21 per hour for baseball/softball facilities at El Cariso Park, and $31 per hour at Hansen Dam soccer complex, the value of this contribution to the area is estimated to be approximately $17,700-$19,000 per year.

3.15.2.3 Development of LACCD Property Only

Development of the LACCD property would inject a lesser amount of construction expenditures into the economy. Assuming certain fixed costs would occur and considering that the ACOE Property is larger than the LACCD property, the construction costs might be reduced to $5 million.

During operations, under the Development of LACCD Property Only alternative, LAMC and its students and staff would continue to expend funds on outside facilities. If a baseball field is constructed on the LACCD property, external costs would continue to be incurred for softball and soccer, which would likely exceed $15,000 per year, as noted above. If softball and soccer fields are constructed on LACCD property, external costs would continue to be expended for baseball, which
would be approximately $25,000 per year (including maintenance and upgrade costs), as noted above.

Gains in enrollment that may be induced by the new fields would also be reduced, perhaps as much as by half. Since the ACOE Property is the site closest to the Health and Fitness Center, the inability to use the site in that program is likely to have a noticeable effect on enrollment, and thereby the program’s financial picture.

3.15.2.4 No Action

Under the No Action alternative, LAMC would not lease ACOE land and would continue to use/rent County and other off-site men’s baseball, women’s softball, and men’s/women’s soccer facilities. The college would continue to pay for upgrades/improvements to these facilities in order to meet intercollegiate standards. Costs incurred by LAMC would be similar to existing conditions, but are likely to increase over time as demand for these facilities increases. Given an annual increase of 4% on rental charges due to inflation, in five-years the rental charge at El Cariso Park would be about $17 per hour, and nearly $38 per hour at Hansen Dam soccer complex. This increase in rental charge equates to approximately $2,425-$3,500 more than the current rental charges paid by the college annually. While costs to LAMC and its students would increase, the contribution to the economy would be reduced compared to the proposed project by at least $10 million from direct construction costs alone.
3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

3.16.1 Affected Environment

Public safety and health involves protection against fire, personal safety, and other hazards. Agencies that are dedicated to supplying these protective services and the existing safety and health environment in these areas are summarized below.

3.16.1.1 Fire

County of Los Angeles

The Los Angeles County Fire Department provides first-response fire protection services to the unincorporated areas of the County—approximately 2,278 square miles—and 57 cities within Los Angeles County. However, the project is not located within the County’s first response service area. County Fire Station 74, located at 12587 N. Dexter Park Road in the foothills of the Sylmar area, is the county fire station situated nearest to the project site, at an estimated travel distance of 6.4 miles. Figure 3.16-1 shows the fire station locations in the area. Station 74 includes two (2) engine companies, two (2) patrols, and three (3) personnel.\(^{62}\)

City of Los Angeles

The Los Angeles City Fire Department (LACFD) provides first-response fire protection services to the project site. The adequacy of fire protection for a given area is based on required fire flow, response distance from existing fire stations, and the Fire Department’s judgment for needs in the area. In general, the required fire-flow is closely related to the community’s land use. The quantity of water necessary for fire protection varies with the type of development life hazard, occupancy, and the degree of fire hazard.

Fire flow requirements vary from 2,000 gallons per minute (gpm) in low density residential areas, to 12,000 gpm in high density commercial or industrial areas.\(^{33}\) A minimum residual water pressure of 20 pounds per square inch (psi) is to remain in the water system, with the required gallons per minute flowing. The required fire flow for the proposed project has been set at 4,000 gpm from four fire hydrants flowing simultaneously at 20 psi per minute.

There are four LACFD fire stations located in the general area of the project site.

Table 3.16-1 provides information on each fire station, including its address, equipment, personnel, and travel distance of each fire station.

\(^{62}\) Augmented reserved staff includes 4 additional personnel during peak fire seasons.
Table 3.16-1 Existing Fire Protection Services

<table>
<thead>
<tr>
<th>Station No. and Address</th>
<th>Equipment</th>
<th>Personnel</th>
<th>Travel Distance to Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Los Angeles Fire Department</td>
<td>• Engines (2)</td>
<td>3 (+4) reserved</td>
<td>6.4 miles</td>
</tr>
<tr>
<td>Fire Station 74</td>
<td>• Patrol (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12587 N. Dexter Park Rd, San Fernando, CA 91342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles City Fire Department</td>
<td>• Single Engine</td>
<td>6-8</td>
<td>2.2 miles</td>
</tr>
<tr>
<td>Fire Station 91</td>
<td>• Paramedic Rescue Ambulances (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14430 Polk Street, Sylmar, CA 91342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles City Fire Department</td>
<td>• Task Force</td>
<td>16</td>
<td>4.4 miles</td>
</tr>
<tr>
<td>Fire Station 98</td>
<td>• Engines (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13035 Van Nuys Blvd, Pacoima, CA 91331</td>
<td>• Rescue Ambulance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles City Fire Department</td>
<td>• Task Force Truck</td>
<td>12</td>
<td>6.9 miles</td>
</tr>
<tr>
<td>Fire Station 75</td>
<td>• Engines (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15345 San Fernando Mission Blvd, Mission Hills, CA 91340</td>
<td>• Rescue Ambulance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles City Fire Department</td>
<td>• Single Engine</td>
<td>6</td>
<td>10.9 miles</td>
</tr>
<tr>
<td>Fire Station 77</td>
<td>• Paramedic Rescue Ambulance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8943 Glenoaks Boulevard, Sun Valley, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Personal Communication with Trey Espy, Captain, County of Los Angeles Fire Department Fire Station 74 (5.20.2009)
Source: Personal Communication with Donald Darby, Captain, City of Los Angeles Fire Department Fire Station 91 (5.21.2009)
Source: Personal Communication with Craig White, Captain, City of Los Angeles Fire Department Fire Station 98 (5.20.2009)
Source: Personal Communication with Ray Hime, Captain, City of Los Angeles Fire Department Fire Station 75 (5.20.2009)
Source: Personal Communication with Daryl Prosser, Captain, City of Los Angeles Fire Department Fire Station 77 (5.21.2009)

Fire Station 91 is located 2.2 miles from the project site. Access to the project site from Fire Station 91 is via Polk Street, traveling north to Eldridge Avenue, then east to Hubbard Street. Fire Station 91 includes a single engine company, two (2) paramedic rescue ambulance, and six (6-8) personnel. Fire Station 98 is located 4.4 miles from the project site. Access to the project site from Fire Station 98 is via north on Van Nuys Boulevard, traveling west to Foothill Boulevard, then north towards Maclay Avenue or Hubbard Street. Fire Station 98 includes one (1) task force, two (2) engine companies, one (1) rescue ambulance, and sixteen (16) personnel.

Fire Station 75, which is situated 12 miles from the project site, provides services through one (1) task force and two (2) engine companies, one (1) paramedic rescue ambulance, and a staff of sixteen (16) personnel. Access to the project site from Fire Station 75 and is traveling north on Maclay Street or Hubbard Street.

63 Day shift includes 8 staffed personnel and night shift includes 6 staffed personnel.
Figure 3.16-1 Fire Station Locations
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Fire Station 77, which is located 10.9 miles from the project site, provides services through one (1) engine company, one (1) paramedic rescue ambulance, and a staff of 6 personnel. Access to the project site from Fire Station 77 and is via west on Glenoaks Boulevard, then traveling north on Maclay Street or Hubbard Street.

There are three components to characterizing fire hazards: the potential for wildland fires (natural or man-made), the potential for urban fires (man-made), and the characteristics of the urban-wildland interface in between, where the natural and urban components merge. Wildland fires can also be known as brush or forest fires. The closest wildland is the Angeles National Forest, which is located approximately 2/3-mile east of the proposed athletic fields. The Angeles National Forest is operated by the U.S. Department of Agriculture Forest Service. The urban-wildland interface lies between the boundary of the Angeles National Forest and the Athletic Fields is approximately 1/3-mile east. The proposed Athletic Fields are located adjacent to the west of Pacoima Wash, which is primarily a gravel wash. The proposed Northern Athletic Field (LACCD owned) is located within a Very High Fire Hazard Severity Zone as designated by the LAFD. Additionally, the southeastern portion of the proposed Southern Athletic Fields (ACOE owned) is located within a Very High Fire Hazard Severity Zone as designated by the LAFD (Figure 3.16-2).

3.16.1.2 El Cariso County Recreation Area

The existing El Cariso County Recreation Area includes underground water lines and domestic use, irrigation, and fire protection services. These waterlines serve existing landscaping, surface parking, and park restrooms. No water lines or fire hydrants exist within the ACOE Properties as the site is undeveloped with the exception of an access road and drainage culvert.

3.16.1.3 Police

The predominant crime statistics for the LAMC campus area, as of March 2009, include one incident of petty theft and vandalism. Police station locations in the area of the Athletics Fields are shown on Figure 3.16-3 Police Station Locations.

The Los Angeles County Sheriff’s Department provides basic police protection services to the existing LAMC campus through the Community College Bureau of the Sheriff’s Department, Field Operations Region II, which has an office within the Plan Facilities temporary building on the campus. This Sheriff’s unit serves the LAMC campus as well as the LAMC centers located at 13000 Sayre Street (Cultural Arts Center), 2843 Foothill Boulevard (Physical Education Building), and 11623 Glenoaks Boulevard (EDD Building). Table 3.16-2 lists the personnel assigned to the Sheriff’s on-campus unit. The office is approximately 1,605 gross square feet (gsf) in size. The unit currently consists of one (1) sergeant, eight (8) armed officers and two (2) armed deputies. The deputies are sworn personnel of the Los Angeles County Sheriff’s Department, while the officers have a civilian status. Additionally, the Sheriff’s Department recruits on average nine (9) student worker cadets to assist the officers in policing the campus. The Sheriff’s office operates 24 hours a day, seven days a week. For an event that necessitates greater security, the Sheriff’s office recruits and deploys additional student-worker cadets.

65 http://lasd.org/divisions/for2/inex.html (May 18, 2009)
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

The eleven (11) County Sheriff Personnel employed to serve the LAMC campus work 8-to 10-hour shifts. Monday through Friday, the day shift is from 6:00 a.m. to 2:00 p.m.; while the night shift if from 2:00 p.m. to 10:00 p.m. There is also a graveyard shift from 9:00 p.m. to 7:00a.m. The most current schedule for Monday through Friday includes two officers and one deputy during the day shift and the nights shift, and one officer during the graveyard shift. On the weekends, the campus is patrolled by one officer and one deputy or a sergeant. The County and national use a broadly accepted national standard of one officer for every 1000 persons as its guideline. The maximum campus population during the daytime peak hours (7:00 a.m. to 3:59 p.m.) for Spring 2009 was an average of 2,549 people (2,230 students and 319 staff). Assuming this maximum campus population, the current Sheriff’s schedule for Monday through Friday equates to one officer for every 850 people on campus during daytime peak hours and one officer for every 1,244 people on campus during the evening hours. On the weekends, the current schedule equates to one officer for every 301 people on campus. With the exception of the evening peak hours, the police-to population ratios are well within the County and national standard of one officer for every 1,000 persons. According to the Los Angeles County Sheriff’s Department, scheduling changes occur on an as-needed basis to maintain police services at LAMC at County acceptable levels.

<table>
<thead>
<tr>
<th>Agency/Station Address</th>
<th>Officers</th>
<th>Response Time</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles County Sheriff’s Office at LAMC 13356 Eldridge Avenue Sylmar, California 91342</td>
<td>1 sergeant, 8 armed officers, 2 armed deputies, and an average of 9 student-worker cadets</td>
<td><5 minutes</td>
<td>LAMC Campus and Off-Campus Facilities (Cultural Arts Center, Physical Education Building, EDD Building)</td>
</tr>
<tr>
<td>LACOPS: County Office of Public Safety Castaic Station 32113 Castaic Lake Castaic, California 91384</td>
<td>3 sergeants and 18 officers</td>
<td>Varies according to calls for service</td>
<td>Santa Clarita Valley, San Fernando Valley, Antelope Valley (Quartz Hill Substation) and portions of La Canada Flintridge area</td>
</tr>
<tr>
<td>Los Angeles Police Department Mission Community Station Mission Hills, California 91345</td>
<td>285 sworn officers and 26 civilian support staff</td>
<td>11.4 minutes</td>
<td>Reporting District 1609 (62-square mile Foothill Area)</td>
</tr>
</tbody>
</table>

Source: PCR, 2005

66 Personal communication with Laura Murphy, Officer, Los Angeles County Sheriff’s Department (May 22, 2009)
68 Institutional Research and Planning, M Pearl (5.18.2009).
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Figure 3.16-2 Fire Hazard Severity Zone Map
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Figure 3.16-3 Police Station Locations
Los Angeles County Office of Public Safety (LACOPS)

The Los Angeles County Office of Public Safety (LACOPS) is a specialized law enforcement agency. As a result of the January 1, 1998, consolidation of the former Park Police from the Department of Parks and Recreation and the Safety Police from the Departments of Health and Internal Services, the agency began its operation as the Los Angeles County Police Department. LACOPS employs 580 sworn and 144 civilian personnel with a $60 million budget, which makes it the fourth largest law enforcement agency in the county of Los Angeles and one of the largest in the state of California. LACOPS provides services to the patrons, employees, and properties of county departments who contract for such services and for a safe environment of those who use county parks and recreational facilities.

The Parks Services Bureau is one of three law enforcement bureaus within the Office of Public Safety. The Parks Services Bureau’s primary duty is to provide law enforcement throughout the County of Los Angeles parks. The county parks are under the direct management of the Department of Parks and Recreation. The County Police is charged with providing a safe environment for all County facilities, and especially to visitors, and employees of the Department of Parks and Recreation.

City of Los Angeles Police Department

City of Los Angeles Police Department’s (LAPD) Mission Community Police Station provides secondary police protection to the LAMC campus through mutual aid agreement with the County of Los Angeles Sheriff’s Department. The Mission community Station jurisdiction area covers 28.18 square miles and has an estimated population of approximately 202,000 persons. The station is located at 11121 Sepulveda Boulevard in the community of Mission Hills, California. The Mission station employs approximately 2 sworn officers and 26 civilian support staff. The estimated police to-population ratio is one officer to every 976 persons based on the population estimate of 278,280 for the Foothill community area. The average response time to emergency calls for the Mission Area during 2002 was 11.4 minutes. The citywide average during 2002 was 10.2 minutes. The predominant crimes in the Foothill Area are aggravated assault, vehicle theft, and burglary from vehicles.

3.16.1.4 Hazards, Hazardous Wastes, and Solid Wastes

A site reconnaissance of the ACOE Property was completed by URS on May 13, 2009 to determine the presence of hazardous materials or wastes. The site reconnaissance noted that the property is an undeveloped, vacant lot covered with native vegetation and shrubs. Numerous dirt paths cross the property and a small concrete pad with conduit piping was observed in the central portion of the property. The former use of the concrete pad is not known. Based on a review of historical sources, the property appears to have never been developed. Hazardous materials and/or wastes were not observed onsite. The property was not included in lists of hazardous materials sites compiled pursuant to Government Code Section 65962.5. The property was also not identified in the agency database report obtained from EDR. Solid waste at LAMC is collected for disposal at a landfill and is also diverted through the implementation of various source reduction and recycling programs at

69 Fax/Letter from Gary J. Brennan, Commanding Officer, Community Affairs Group, City of Los Angeles Police Department, dated February 5, 2003; cites 2000 Census data

70 Environmental Data Resources, Inc. May 12, 2009. The EDR-City Directory Abstract (2491540.6).
the campus. These programs separate recyclables, such as beverage containers, cardboard, glass, newspaper, office paper, plastics, and scrap metal, for collection and handling as a resource recovery material. Solid waste collection, disposal, and resource recovery services at LAMC are outsourced directly by the District to a private waste hauler. Solid waste collection is provided by North State Environmental and recyclable material collection is provided by Wyerhaeuser.

3.16.2 Environmental Consequences

3.16.2.1 Methodology

The methodology employed to evaluate impacts related to fire protection services included contacting both the LACFD and the Los Angeles County Fire Department to obtain current information on staffing, equipment, fire-flow requirements, and response times to ascertain demand on fire services. To estimate project demand for fire protection services, the proposed construction and the existing and project LAMC campus population and park usage estimates are considered. Existing site conditions such as roadway widths, fire hydrant service, brush fire hazard areas, and topography also were considered. In addition, project features proposed to meet the fire protection needs of the project were identified, and the state, County and City plans and codes were reviewed to identify fire protection policies and requirements to be considered in the impact analysis.

The methodology employed to evaluate impacts related to police protection services included assessment and adequacy of existing and planned facilities, staffing, and equipment of both the County Sheriff and LACOPS to meet the additional demand for police protection resulting from the development of the proposed project. Current data on existing and planned police facilities, staffing, resources, patrolling practices, and response times were collected and project demand for police protection was ascertained using the maximum campus population assumptions and the maximum park participation estimates for the proposed project. The District, the County Sheriff, and the LAPD recognize the national standard of one officer for every 1000 persons as a guide.

The methodologies employed to evaluate hazards/hazardous materials related impacts included review of: regulatory agency databases, aerial photography, topographic maps, city directories, onsite reconnaissance, interviews with college personnel, and review of published maps available on public websites. To analyze the solid waste impacts associated with the operation of the proposed Athletic Fields, a conservative estimate of 1,040 cubic yards per year was used.

3.16.2.2 Proposed Action

Short-Term Impacts

Fire Protection Services

The proposed project is located within the County—designated San Gabriel Southface Area and the City-designated zone of Additional Areas of High Fire Hazard. Currently, these sites are undeveloped land with natural vegetation (dry brush), debris, an access road, and drainage culvert. The construction planned for the proposed project would include the use of heavy equipment powered by small amounts of flammable liquid (diesel or other fuels). The site would be cleared of vegetation, flammable rubbish, and any other combustible features prior to the use of graders, tractors, loaders, and other heavy construction equipment. Required watering for dust and erosion

71 City of Los Angeles, Los Angeles Municipal Code (5.02.02)
control would reduce the potential for accidental fires. With the use of standard construction practices and adherence to the state, County, and City fire codes to the extent required, the potential for an accidental fire to occur during construction would be very low.

Police Protection Services

Construction of the proposed Athletic Fields would involve a temporary workforce on the construction sites during weekdays for a period of approximately 8 months. This project is expected to draw its construction workforce from the Los Angeles metropolitan area. Therefore, no permanent project-related increase in population is expected during the construction period, so no additional police protection would be required in the general area. The individual construction staging sites within the proposed project would be secured with temporary fencing, separating the construction activity, equipment, and materials from ongoing activities within the project site. The construction contractor would provide security from the fenced construction area as necessary and would be responsible for installing temporary security lighting within the project site to further secure equipment and materials. With the proposed lighting and individual construction site fencing, the existing resources (personnel and equipment) available to the LACOPS would be sufficient to provide adequate police service during the construction period.

Hazards, Hazardous Wastes, and Solid Wastes

During and after the proposed construction, any hazardous materials utilized would be limited to those typically used in construction and standard maintenance activities. All hazardous materials would be contained, stored, used, and disposed in accordance with manufacturers’ instructions and handled in accordance with applicable standards and regulations. Therefore, no impacts from material storage or use are anticipated.

The proposed project is located within one-third-mile of an existing school. During construction, heavy equipment would be used during the proposed project that could result in the combustion or release of flammable fuels during an accident that could affect the school or neighboring homes. However, with the use of standard construction practices and adherence to the state, County, and City fire codes to the extent required, along with the preparation and implementation of a work plan, the potential for combustion or release of flammable fuels during an accident to occur is very low.

Considering the proposed Athletic Fields features, the anticipated minimal amounts of construction debris that would be generated by the currently undeveloped site, and the availability of landfill capacity, the proposed construction of the Athletic Fields would not affect solid waste disposal services and facilities. The proposed Athletic Fields would comply with all federal, state, and local statutes and regulations related to solid waste.

Long-Term Impacts

Fire Protection Services

The proposed project exhibits minimal structural development other than planned site amenities such as restrooms, concessions stands, restrooms, press boxes, batting cages, bull pens, a walking path, par course, and two surface street parking lots. Water lines for domestic water, irrigation, and fire protection fire hydrants would be installed on-site with connections to existing facilities.
As mentioned above, the project site lies outside of the response distance of the nearest fire station (Fire Station 91), and it is located within the City-designated Additional Areas of High Fire Hazard. Project features proposed to reduce fire hazard include landscape irrigation, regular maintenance of ball fields and landscape areas, a pre-evacuation alarm notification system, and a procedure for emergency evacuation of the ball fields.

The project would bring up to several hundred athletes and visitors at a time to an open area, potentially increasing the opportunity for man-made or accidental fires. Since the fields will be landscaped and irrigated and the athletic use does not require the use of flammable materials, the instance for a potential wildfire would be very low. In the event of a wildfire during the recreational use of these fields, an emergency evacuation procedure would include advanced notification from LAMC to dispatch law enforcement personnel to evacuate patrons from the fields. The personnel would safely guide southbound traffic from Mountain Glenn Terrace and surrounding homes via McClay Street to areas not affected by the fire.

Police Protection Services

The existing ball fields on El Cariso County Park currently attract up to a maximum of 800 patrons each day year-round (covering programming hours of 8:00 a.m. to 11:00 p.m.). The proposed project would shift the current LAMC ball field and soccer activities and associate concentration of people (including personal belongings) to the ACOE Property, east of the park. Any new patrons that may utilize the County Ball Field facilities as a result of their increased availability are assumed to be from within the same 20-miles service radius. As a result, the proposed project would not cause the project to exceed the existing 1:1000 police to population service ratio. The project would necessitate a change in police practices but not necessarily a change in the number of police officers assigned to the LACOPS or to the project site. An increase in recreational activity and incidence of petty crime associated with the concentration of people (and personal belongings) would be reduced by an adjustment in LACOPS patrolling practices and the proposed installation of security lighting within the parking areas. While the development of the proposed project is expected to result in a change to police patrolling practices, the demand would not require new or physically altered police facilities.

Hazards, Hazardous Wastes, and Solid Wastes

Use of the Athletic Fields would not generate hazardous materials. Since materials to be used would be non-hazardous, the project would have no impact from release, transport, use or disposal of waste disposal during operations.

One solid waste bin with a capacity of up to 20 cubic yards and separate receptacles for collection of recyclable materials would be provided on site to serve the waste disposal needs of the Athletic Fields. Operation of the Athletic Fields could generate up to 1,040 cubic yards of solid waste per year. County Class III landfills would be able to accommodate the nominal increase in solid waste associated with the operation of the Athletic Fields. Furthermore, by providing separate receptacles for recyclable materials, and applying sustainable practices to landscape maintenance, the proposed Athletic Fields would contribute toward County programs for achieving compliance with state requirements for diversion of 50 percent of solid waste from landfill disposal.

72 PCR EIR, LAMC Master Plan and Public Recreation Improvement Program (October 2005)
Impact Summary

Impacts on safety, health, hazardous wastes and solid wastes would not be significant because the proposed project would adhere to state, County, and City fire codes to the extent required and follow appropriate emergency evacuation procedures; the proposed lighting and individual construction site fencing, and the existing resources (personnel and equipment) available to the LACOPS would be sufficient to provide adequate police service during construction; any hazardous materials used would be contained, stored, used, and disposed in accordance with manufacturers’ instructions and handled in accordance with applicable standards and regulations; and the proposed Athletic Fields would comply with all federal, state, and local statutes and regulations related to solid waste.

During operation, the proposed project would not cause the project to exceed the existing 1:1000 police to population service ratio. Materials to be used would be non-hazardous so the project would have no impact from release, transport, use or disposal of waste disposal during operations. Considering the proposed Athletic Fields features, the anticipated nominal amounts of solid waste that would be generated by operation of the proposed recreation facilities and the availability of landfill capacity, the proposed operation of the Athletic Fields would not affect solid waste disposal services and facilities.

Cumulative Impacts

Fire Protection Services

Past projects that have influenced the need for fire protection services include Mountain Glen Terrace, SIBL ballfields, LAMC (2007 Facilities Master Plan and proposed 2009 Facilities Master Plan). Twenty-two (22) of thirty-four (34) proposed projects being reviewed by the LADOT are located within four miles of the proposed project site and would rely on the first response fire protection services of City Fire Station 91. Cumulative impacts would be avoided because the following types of fire prevention and extinguishing features are part of the proposed project and are expected to be required of other projects:

- Improvements to existing water lines to accommodate project-specific fire flow requirements;
- Increase in the number and location of fire hydrants in compliance with the state and City fire codes; and
- Addition of fire extinguishing systems such as fire alarm systems, water-flow alarm devices, and fire sprinklers within project buildings and structures.

In addition, each of the cumulative projects would be individually subject to environmental review with respect to the demand for fire protection services and availability and capacity of the existing facilities and services. Implementation of the types of fire prevention and extinguishing features described above, compliance with state and local fire codes, and adherence to standard construction practices, would reduce cumulative impacts on fire protection and the need for new facilities.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.16 Safety, Health, Hazardous Wastes, and Solid Wastes

Police Protection Services

Past projects that have required police protection are similar to those discussed above for fire protection services. Operation of the proposed project in conjunction with other projects is expected to generate demand for additional police protection services in the Sylmar area. If this demand is not funded from existing sources (e.g., property taxes) to which each related project would contribute, or other mechanisms to which publicly owned lands would contribute, cumulative impacts may become incremental over a period of time. However, each project would be evaluated by the appropriate lead agency to determine its individual impact on County Sheriff’s and LACOP’s services, and funding measures will be established to prevent adverse cumulative effects.

Hazards, Hazardous Wastes, and Solid Wastes

Residential development in the area has created demand for solid waste services. No past projects have created hazards or hazardous wastes. There are no other aspects of the proposed project that would result in either project specific or cumulative hazards or hazardous materials impacts. The related projects are expected to be developed in accordance with applicable codes, policies, and regulations pertaining to solid waste disposal. Based on available information regarding cumulative development, it is reasonable to assume that these projects would incorporate appropriate design standards or elements pertaining to on-site waste collection facilities, source reduction and recycling, conservation.

3.16.2.3 **Development of LACCD Property Only**

Fire and Police Protection Services

The Development of LACCD Property Only alternative would reduce demand for short-term and long-term fire and police protection services compared to the proposed project. Since existing and planned services would be sufficient to provide adequate services during construction and operation of the proposed project, these services would be adequate under this alternative. Effects on would be similar to, but less than, those of the proposed project.

Hazards, Hazardous Wastes, and Solid Wastes

Since a smaller area would be affected, the short-term and long-term impacts involving hazardous materials for the LACCD Athletic Fields alone would be similar to but less than those of the proposed project.

3.16.2.4 **No Action**

The No Action Alternative would not result in an increase demand for public services such as fire and police because the Athletic Fields are currently a vacant undeveloped land. Current existing and planned services would be sufficient to provide adequate services to protect this site in its current condition.
3.17 Noise

3.17.1 Affected Environment

Noise is defined as unwanted or objectionable sound. The effect of noise on people can include general annoyance, interference with speech communication, sleep disturbance and, in the extreme, hearing impairment. The unit of measurement used to describe a noise level is the decibel (dB). The human ear is not equally sensitive to all frequencies within the sound spectrum. Therefore, the “A-weighted” noise scale, which weights the frequencies to which humans are sensitive, is used for measurements. Noise levels using A-weighted measurements are written dB(A) or dBA. Decibels are measured on a logarithmic scale which quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling a traffic volume, would increase the noise level by 3 dBA; a halving of the energy would result in a 3 dBA decrease. For analysis of traffic noise, changes of less than 3 dBA, while audible under controlled circumstances, are not readily discernable in an outdoor environment. Thus, a change of 3 dBA is considered as a barely audible change. An increase of 5 dBA is considered readily perceptible and would generally result in a change in community response.

Sensitive receptors are areas where humans are participating in activities that may be subject to the stress of significant interference from noise. Land uses associated with sensitive receptors often include residential dwellings, mobile homes, hotels, motels, hospitals, nursing homes, education facilities, and libraries. Other receptors include commercial office and industrial buildings, which are not considered as sensitive as single-family homes, but are still protected by the City of Los Angeles land use compatibility standards.

Sound dissipates exponentially with distance from the noise source. This phenomenon is known as “spreading loss.” For a stationary or point source, sound levels decrease by approximately six decibels for each doubling of distance from the source. Noise produced by a line source, such as highway traffic or a moving train, decreases by three decibels for each doubling of distance from the source in a reflective (hard site) environment. When sound travels across absorptive vegetation (soft site), such as fields, or parks, the noise level can decrease by six decibels for each doubling of the distance.

Existing land uses include adjacent residences and the college. A Noise Analysis was prepared for the proposed project in May 2009. The existing noise environment was quantified by a noise measurement survey conducted in the campus environs and nearby off-campus locations. Noise measurements were conducted at seven representative locations which included three long-term measurement and four short-term measurements. A map of the noise measurement locations is presented in Figure 3.17-1 Locations of Noise Measurement Sites. Long-term measurements consisted of 24-hour continuous data, while short-term measurement periods were a minimum one hour to a maximum two hours in duration.

All sound level meters were set to measure the A-weighted noise levels at the slow meter response setting. Long-term and short-term measurements sites were placed at noise sensitive receivers in key locations around the perimeter of the college campus. Long-term sites were selected according to the proximity to the proposed athletics fields. Long-term Site 1 (LT-1) was positioned in the backyard of one of the residences in the neighborhood adjacent to the southeast location of the proposed athletics fields along Harding Street. Long-term Site 2 (LT-2) was positioned in the
backyard of a residence adjacent to Eldridge Avenue across from the golf course. This section of Eldridge Avenue is considered to be the main arterial from the college campus to the Athletic Fields. Long-term Site 3 (LT-3) was positioned in the backyard of a residence on Aztec Street. Short-term sites were also selected according to the proximity of the proposed project. Short-term Site 1 (ST-1) is located in a residential area at the north end of the Sylmar Independent Baseball League (SIBL) complex. Short-term Site 2 (ST-2) is located across the SIBL complex and the Pacoima Wash. Short-term Site 3 (ST-3) was located on Harding Street directly across from the Pacoima Wash and the proposed athletic facility, south of the SIBL complex. Short-term Site 4 (ST-4) is located on Eldridge Avenue, south of Hubbard Street and north of Pasha Street across from the College.

3.17.2 Environmental Consequences

3.17.2.1 Methodology

Noise from short-term activity is generated by the broad array of powered noise-producing mechanical equipment used in the construction process. This equipment ranges from hand-held pneumatic tools to scrapers, bulldozers, and dump trucks. The exact complement of noise producing equipment that would be in use during any particular period of construction has not yet been determined for the project. Noisy short-term activities could be in progress at more than one part of the project site at a given time. However, the noise levels from short-term activity during various phases of a typical construction project can be evaluated, and their use provides an acceptable prediction of a project's potential short-term noise impacts. The impact assessment procedure follows Section 112.05 of the Municipal Code for the City of Los Angeles which covers construction noise. The noise metric used to evaluate construction noise impacts is Lmax.

Future noise impacts resulting from vehicular traffic on roadways were modeled using the Federal Highway Administration (FHWA) Highway Traffic Noise Prediction Model (FHWA-RD-77-108) which includes the California specific vehicle noise curves (CALVENO). The model is used to calculate an energy average noise level for the different classes of vehicles (automobiles, medium truck, heavy trucks) using the roadways. The model also incorporates the total number of vehicles using the road each day, the vehicle speed, and the percentage of vehicles on the road during the three time periods of the day used to calculate CNEL (as listed in Appendix G), in order to calculate the total noise exposure for the roadway for a given case. Site-specific information is entered, such as distances from the roadway to a noise barrier or to the receiver, along with the elevations and heights of the roadway, noise barrier and receiver. The average daily traffic (ADT) volumes for each road segment analyzed are based upon the latest traffic data collected and calculated in the traffic analysis conducted for this study. The noise metric used to evaluate traffic noise impacts is CNEL. Noise levels from recreational activity generated by the activities occurring on and around the Athletic Facility are assessed based on the use of the public address system and the crowd attendance. The assessment procedure follows Section 111.02 of the Municipal Code for the City of Los Angeles Noise Regulation. The noise metric used to evaluate noise impacts from recreational activities in and around the Athletic Fields is Leq.
Figure 3.17-1 Location of Noise Measurement Sites
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.17 Noise

3.17.2 Proposed Action

Short-Term Impacts

Maximum noise levels from construction would produce levels as high as 77 dBA Lmax for the residences located nearest to the proposed Athletic Fields. Maximum short-term noise levels would exceed ambient levels (49 to 63 dBA) by 12-28 dBA, which would exceed the City’s 5 dBA standard during noise-generating construction activities. Therefore, for residents adjacent to the proposed project, short-term noise would be clearly audible during the construction period.

Long-Term Impacts

According to the Noise Analysis (Appendix F of the LAMC 2007 DEIR73), noise from the proposed Athletic Fields would not exceed the daytime noise ordinance level standard of 50 dBA Leq at any of the noise sensitive land uses located near the Athletic Fields (see Table 3.17-1). All of the games to be conducted at the proposed Athletic Fields would be played during daytime hours (7:00 a.m. to 10:00 p.m.); therefore no nighttime impacts would occur.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Measured Ambient Noise Level (dBA Leq)</th>
<th>Modeled Future Athletic Field Noise Level (dBA Leq)</th>
<th>Noise Ordinance Standard (dBA Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-1</td>
<td>47.8</td>
<td>39.4</td>
<td>50.0</td>
</tr>
<tr>
<td>ST-2</td>
<td>48.7</td>
<td>36.9</td>
<td></td>
</tr>
<tr>
<td>ST-3</td>
<td>39.3</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>LT-1</td>
<td>53.1</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>LT-2</td>
<td>55.2</td>
<td>40.8</td>
<td></td>
</tr>
</tbody>
</table>

Source: Appendix B

The proposed Athletic Fields are expected to be built at an elevation below that of the existing golf course located directly to the west. The change in topography would result in a surface that may reflect some of the sound emanating from the Athletic Fields back toward the east. Some of the sound energy that hits this sloping surface would be partially absorbed due to the consistence of the soil and the foliage that is growing on the surface. Some of the sound energy would be diffused due to the angle of the slope and the unevenness of the surface. A very small amount of acoustic energy is expected to be reflected directly back toward the homes east of the Athletic Fields. Due to the distance traveled, the reflected sound levels would be much lower than the direct sound already reaching the noise-sensitive receptors to the east. Given that the direct noise level is less than the noise ordinance level, any reflected noise would also be much less than the noise ordinance level, and would not in themselves create additional noise impacts.

Impact Summary

Impacts on noise would not be significant because operational noise from the project would not exceed the daytime ordinance level standard of 50 dBA Leq at any of the noise sensitive land uses located near the project.

73 Los Angeles Community College District, July 2009. Los Angeles Mission College 2009 Facilities Master Plan Subsequent Environmental Impact Report, Draft, Volume II.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.17 Noise

Cumulative Impacts

Past developments such as Mountain Glen Terrace, SIBL ballfields, El Cariso Community Regional Park and Golf Course have added to existing traffic noise in the area. The potential future cumulative impacts of traffic related noise increases were calculated and the results of that analysis are shown in Table 3.17-2. The cumulative increases take into account the increases in traffic due to all of the non-project related growth in the vicinity of the project site, as well as the increase due to the project itself. The projected change in noise levels is expected to range from 0.7 dB to 4.4 dB CNEL along the roadways in the area of the project. Two of the largest increases in traffic noise are expected to occur along Harding Street north of Eldridge Avenue (4.4 dB CNEL), and along Maclay Street west of the driveway leading to the SIBL complex (2.3 dB CNEL). There are no noise sensitive land uses along either of these sections of roadway; therefore there would be no noise impacts due to project related traffic along these two roadway sections. All remaining sections of roadway would see an increase in noise level of less than 3 dB CNEL. Noise level increases of this magnitude would be difficult to detect and are below the significance threshold of 3 dB, therefore there would be no cumulative impact due to project related traffic noise on any of the roadway segments analyzed.

3.17.2.3 **Development of LACCD Property Only**

There would still be temporary short-term noise impacts to the noise sensitive land uses on the east side of campus associated with the development of the LACCD portion of the Athletic Fields and reconstruction of the access road and revetments along Pacoima Wash. Potential adverse impacts could occur as a result. Impacts would be similar to those of the proposed project alternative because maximum levels reaching residents would be essentially the same.

3.17.2.4 **No Action**

The noise exposure levels for the existing noise sensitive land uses would remain at their current levels. There would be no new impacts from construction and operation. No potential adverse impacts would occur. Impact would be less than those of the Proposed Project alternative.
Table 3.17-2 Existing and Future Noise Levels

<table>
<thead>
<tr>
<th>Road Segment</th>
<th>ADT</th>
<th>Noise Levels at 50 Feet (dBA CNEL)</th>
<th>ADT</th>
<th>Noise Levels at 50 Feet (dBA CNEL)</th>
<th>ADT</th>
<th>Noise Levels at 50 Feet (dBA CNEL)</th>
<th>Change Relative to Future No Project (dBA CNEL)</th>
<th>Change Relative to Existing (dBA CNEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polk Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Gladstone & Fenton</td>
<td>11,838</td>
<td>64.7</td>
<td>14,052</td>
<td>65.4</td>
<td>20</td>
<td>14,072</td>
<td>65.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Hubbard Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Gladstone and Fenton</td>
<td>28,952</td>
<td>70.0</td>
<td>38,365</td>
<td>71.2</td>
<td>460</td>
<td>38,825</td>
<td>71.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Eldridge Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of Hubbard Street</td>
<td>8,174</td>
<td>63.1</td>
<td>9,825</td>
<td>63.9</td>
<td>60</td>
<td>9,885</td>
<td>63.9</td>
<td>0.0</td>
</tr>
<tr>
<td>East of Pasha Place</td>
<td>8,369</td>
<td>63.2</td>
<td>14,855</td>
<td>65.7</td>
<td>130</td>
<td>14,985</td>
<td>65.7</td>
<td>0.0</td>
</tr>
<tr>
<td>East of Gridley Street</td>
<td>4,882</td>
<td>60.9</td>
<td>8,228</td>
<td>63.1</td>
<td>900</td>
<td>9,128</td>
<td>63.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Harding Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North of Eldridge Avenue</td>
<td>2,143</td>
<td>57.3</td>
<td>4,033</td>
<td>60.0</td>
<td>1,810</td>
<td>5,843</td>
<td>61.6</td>
<td>1.6</td>
</tr>
<tr>
<td>South of Eldridge Avenue</td>
<td>2,518</td>
<td>58.0</td>
<td>3,896</td>
<td>59.9</td>
<td>130</td>
<td>4,026</td>
<td>60.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Maclay Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Gladstone and Fenton</td>
<td>11,444</td>
<td>66.0</td>
<td>15,968</td>
<td>67.4</td>
<td>840</td>
<td>16,808</td>
<td>67.6</td>
<td>0.2</td>
</tr>
<tr>
<td>South of Harding Street</td>
<td>6,706</td>
<td>63.6</td>
<td>9,592</td>
<td>65.2</td>
<td>760</td>
<td>10,352</td>
<td>65.5</td>
<td>0.3</td>
</tr>
<tr>
<td>West of driveway to (SIBL)</td>
<td>6,590</td>
<td>63.6</td>
<td>8,270</td>
<td>64.6</td>
<td>2,920</td>
<td>11,191</td>
<td>65.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.17 Noise
3.18 Traffic

This section describes the existing environmental conditions for traffic and transportation circulation system potentially affected by the development of the ACOE Property. This section also evaluates the environmental consequences that could result from the Proposed Action, Development of the LACCD Property Only, and No Action alternatives. The evaluation is based on traffic count data and traffic modeling found in Appendix H of the LAMC 2009 Facilities Master Plan EIR.74

3.18.1 Affected Environment

Key roadways segments and intersections, existing daily roadway and peak hour intersection traffic volume information, and Levels of Service (LOS) analysis results are provided below for roadways near the Athletic Fields and the surrounding LAMC Campus.

3.18.1.1 Circulation System

Roadway System Overview

Several key regional and local roadways traverse the study area (see Figure 3.18-1). Each of the key roadways, as well as associated study intersections within the study area is discussed below. The roadway network in the project area lies diagonally from the northwest to southeast. For clarity, this document will refer to roadways that run parallel to the I-210 as “east-west” and roadways that run perpendicular to the I-210 as “north-south.”

North-South Roadways

Hubbard Street

This is a north/south-oriented roadway providing primary access to the project site. It also provides access to the driveway on the northwest side of the campus. Hubbard is classified as a Major Highway Class II from Eldridge Avenue south and provides primary access to neighborhoods in the project area. This is a four-lane roadway with a full interchange with I-210 three-quarters of a mile from the LAMC campus. The posted speed limit is 40 mph.

Maclay Street

This is a north/south-oriented roadway east of the project site. Maclay is designated as a Secondary roadway from Eldridge Avenue south by the City of Los Angeles and provides access to neighborhoods south of the project site. This is a two-lane roadway up to the approach with the I-210 where it transitions to four lanes. It has a full interchange with I-210 one and one-half miles from the college. The posted speed limit is 30 mph.

Maclay Avenue/Gavina Avenue (Private Road)

This roadway is located directly east of the project site. Where Maclay Avenue crosses the Pacoima Wash it becomes a private road for the residential community it serves. To the north it transitions to

Gavina Avenue. After crossing the wash again it returns to a public roadway. The roadway has a posted speed limit of 35 mph. Several of the communities it serves are gated.

Harding Street

This is a north/south-oriented roadway east of the project site designated as a Collector from Maclay Avenue to Fenton Avenue. It is a two-lane roadway with a post speed limit of 25 mph.

SIBL Way

This is an unnamed, an unimproved two-lane, undesignated dead end north/south-oriented roadway located along the eastern edge of the proposed Athletic Fields site. Its northern end terminates at the Sylmar Independent Baseball League (SIBL) fields, which has access to Gridley Avenue. Its southern end connects to Maclay Street just north of the Harding Street intersection.

East-West Roadways

I-210

This is an east/west freeway that traverses the Los Angeles metropolitan area from San Bernardino County to the east, terminating at I-5 to the west. There are three full freeway interchanges to the west and southwest of the project site at Polk Street (1.5 miles), Hubbard Street (.75 miles), and Maclay Street (1.5 miles). In the project vicinity, three eastbound and three westbound lanes are provided. The most direct access to the project site is provided by Hubbard Street.

Foothill Boulevard

This is an east/west oriented roadway to the south of the project site that runs parallel to the I-210. It is classified as a Major Highway Class II by the City of Los Angeles. This roadway provides primary east-west local access to retail businesses in the project area. This is a four-lane roadway with a posted speed limit of 40 mph.

Gladstone Avenue

This is an east-west local roadway serving local neighborhoods south of the project site. It is classified as a Collector by the City of Los Angeles. The roadway provides two lanes and runs parallel to the I-210 on its north side providing access to neighborhoods in the area. The posted speed limit is 35 mph.

Fenton Avenue

This is a two-lane east/west oriented local street north of Gladstone Avenue and southwest from the project site. The roadway is classified as a Collector by the City of Los Angeles, serves residential neighborhoods in the project area, and has a posted speed limit of 25 mph.

Eldridge Avenue

This roadway provides direct access to the project site and the main driveway on the south side of campus. The roadway is an east/west oriented local street with two travel lanes, on street parallel and angled parking, and a posted speed limit of 35 mph. The roadway is classified as a Secondary roadway by the City of Los Angeles and provides access to neighborhoods east and west of the project site.
Figure 3.18-1 Key Roadways in the Project Area
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.18 Traffic

Blank Page for Back of Figure
3.18 Traffic

3.18.1.2 Site Access

Access to the proposed site of the Athletic Fields is provided by a bi-directional driveway (“SIBL Way”) on Maclay Street just north of the intersection with Harding Street. Another method of accessing this site is available from the north from Gridley Avenue through the SIBL field parking lots, but only when Los Angeles County unlocks the gate between the SIBL fields and Gridley Avenue under emergency conditions.

3.18.1.3 Parking, Transit, and Alternative Transportation

Existing Parking Conditions

No paved parking exists at the ACOE Property at this time.

Existing Public Transit

The Los Angeles County Metropolitan Transportation Authority (MTA) serves the College directly with two bus lines, lines 234 and 634, with a stop at the corner of Hubbard Street and Eldridge Avenue adjacent to the campus. Line 234 is marked by a route sign on a pole. Line 634 has a route sign attached to a utility pole. A bench, trash receptacle, and shelter are also provided. The College has also implemented bus driver lay over support at this location. When transfer opportunities are considered, much of the Los Angeles metropolitan area is within reach via the bus routes readily available near the college. When rail is considered, regional trips become possible. Transit and rail routes in the immediate vicinity of the college are described below.

- MTA Line 234 – Line 234 provides service from Sherman Oaks in the south to the line’s northern terminus that is a loop along the western edge of the LAMC campus on Sayre Street, Eldridge Avenue, Hubbard Street, and Simshaw Avenue. Weekday service is provided from approximately 5:00 a.m. to 7:30 p.m. with headways ranging from 15 minutes, to one hour. Weekend and holiday service is provided with approximately one-hour headways between 6:00 a.m. and 7:30 p.m.

- MTA Line 634 – Line 634 provides service from the Metrolink commuter rail station approximately 2.4 miles from the campus. Service is direct along Hubbard Street.

- Metrolink – The Southern California Regional Rail Association (SCCRA) operates the Metrolink train service throughout the greater Los Angeles basin. The nearest Metrolink line, the Antelope Valley line, operates out of downtown Los Angeles running north-south and parallel to the I-5 freeway with stops in the City of Glendale, Burbank, and Sun Valley. Users of Metrolink alighting in Sylmar could transfer to MTA Line 634 for access to the college.

Existing Pedestrian Facilities

Pedestrian facilities, including sidewalks, wheelchair ramps, crosswalks, and pedestrian call buttons at intersections are present throughout the study area.

Table 3.18-1 provides an inventory of pedestrian facilities at the only signalized intersection near the project site.
Table 3.18-1 Signalized Pedestrian Crossing Locations

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Leg of Intersection</th>
<th>Crossing Direction</th>
<th>Pedestrian Push Button Type</th>
<th>Pedestrian Indicator Type</th>
<th>ADA Compliant Ramps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbard Street/Eldridge Avenue</td>
<td>North</td>
<td>Westbound</td>
<td>None</td>
<td>Incandescent</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South</td>
<td>Westbound</td>
<td>None</td>
<td>Incandescent</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East</td>
<td>Northbound</td>
<td>None</td>
<td>Incandescent</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West</td>
<td>Northbound</td>
<td>None</td>
<td>Incandescent</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southbound</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Bicycle Facilities

The College provides bicycle racks at the Main and East Campus buildings for users to secure their bicycles while using the College. There are no other bicycle facilities, lanes, or routes in the study area.

Existing Public School Sites

Harding Street Elementary School, located near Harding Street and Fenton Avenue, is the closest public school to the project site. It attracts pedestrian traffic from its own students and from LAMC students using Fenton Avenue, Harding Street, and Gridley Street as a path to travel to and from the College.

Existing Intersection and Roadway Levels of Service

Level of Service Descriptions

Level of Service (LOS) is an indicator of operating conditions on a roadway or at an intersection and is defined in categories ranging from A to F. These categories can be viewed much like school grades, with A representing the best traffic flow conditions and F representing poor conditions. LOS A indicates free-flowing traffic and LOS F indicates substantial congestion with stop-and-go traffic and long delays at intersections. Table 3.18-2 provides definitions of LOS for signalized intersections using the Transportation Research Board Critical Movement Analysis (CMA), Circular 212 Planning Method methodology. CMA is a method which determines the volume to capacity (V/C) ratio on a critical lane bases and LOS associated with each V/C ratio at a signalized intersection.
Table 3.18-2 Level of Service Descriptions

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description of Operation</th>
<th>Range of V/C Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Describes primarily free-flow conditions at average travel speeds. Vehiciles are seldom impeded in their ability to maneuver in the traffic stream. Delays at intersection are minimal.</td>
<td>0.00 – 0.60</td>
</tr>
<tr>
<td>B</td>
<td>Represents reasonably unimpeded operations at average travel speed. The ability to maneuver in the traffic stream is slightly restricted and delays are not bothersome.</td>
<td>0.61 – 0.70</td>
</tr>
<tr>
<td>C</td>
<td>Represents stable operations, however, ability to change lanes and maneuver may be more restricted than LOS B and longer queues are experienced at intersections.</td>
<td>0.71 – 0.80</td>
</tr>
<tr>
<td>D</td>
<td>Congestion occurs and a small change in volume increases delays substantially.</td>
<td>0.81 – 0.90</td>
</tr>
<tr>
<td>E</td>
<td>Severe congestion occurs with extensive delays and low travel speeds occur.</td>
<td>0.91 – 1.00</td>
</tr>
<tr>
<td>F</td>
<td>Characterizes arterial flow at extremely low speeds and intersection congestion occurs with high delays and traffic queuing.</td>
<td>> 1.00</td>
</tr>
</tbody>
</table>

Study Intersections

The 29 key study area intersections shown on Table 3.18-3 were analyzed in a traffic study. The existing geometrics, traffic counts, volumes, volume/capacity ratios, and levels of service for these intersections are shown in Appendix H of the project’s EIR.

Results of the analysis shows that all but eight (8) of the study area intersections are currently operating at acceptable LOS D or better under Existing conditions. The following eight (8) intersections were forecast to be operating at unacceptable LOS E or F:

- Polk Street / I-210 EB Ramp (LOS F AM)
- Hubbard Street / Foothill Boulevard (LOS F AM)
- Hubbard Street / I-210 EB Ramp (LOS E AM)
- Hubbard Street / I-210 WB Ramp (LOS E AM/PM)
- Maclay Avenue / Foothill Boulevard (LOS F PM)
- Maclay Avenue / I-210 EB Ramp (LOS F AM)
- Maclay Avenue / Gladstone Avenue (LOS E PM)
- Maclay Avenue / Fenton Avenue (LOS E PM)

Table 3.18-3 Study Intersections

<table>
<thead>
<tr>
<th>No.</th>
<th>Intersection</th>
<th>Jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polk Street / Glenoaks Boulevard</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>2</td>
<td>Polk Street / I-210 EB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>3</td>
<td>Polk Street / I-210 WB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>4</td>
<td>Polk Street / Gladstone Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>5</td>
<td>Polk Street / Eldridge Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>6</td>
<td>Sayre Street / Gladstone Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>7</td>
<td>Sayre Street / Eldridge Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>8</td>
<td>Hubbard Street / Glenoaks Boulevard</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>9</td>
<td>Hubbard Street / Foothill Boulevard</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>10</td>
<td>Hubbard Street / I-210 EB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>11</td>
<td>Hubbard Street / I-210 WB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>12</td>
<td>Hubbard Street / Gladstone Avenue</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>13</td>
<td>Hubbard Street / Fenton Avenue</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>14</td>
<td>Hubbard Street / Eldridge Avenue</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>15</td>
<td>Hubbard Street / Lexicon Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>16</td>
<td>Hubbard Street / Garrick Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>17</td>
<td>Hubbard Street / Shablow Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>18</td>
<td>Rajah Street / Gavina Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>19</td>
<td>Tibbetts Street / Gavina Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>20</td>
<td>Pasha Street / Eldridge Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>21</td>
<td>Harding Street / Fenton Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>22</td>
<td>Harding Street / Eldridge Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>23</td>
<td>Maclay Avenue / Glenoaks Boulevard</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>24</td>
<td>Maclay Avenue / Foothill Boulevard</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>25</td>
<td>Maclay Avenue / I-210 EB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>26</td>
<td>Maclay Avenue / I-210 WB Ramp</td>
<td>Caltrans</td>
</tr>
<tr>
<td>27</td>
<td>Maclay Avenue / Gladstone Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>28</td>
<td>Maclay Avenue / Fenton Avenue [1]</td>
<td>City of Los Angeles</td>
</tr>
<tr>
<td>29</td>
<td>Maclay Avenue / Harding Street [1]</td>
<td>City of Los Angeles</td>
</tr>
</tbody>
</table>

Roadway Segment Analysis

Table 3.18-4 summarizes the existing volumes and LOS on eight (8) study roadway segments.

Table 3.18-4 Study Area Roadway Segments Existing Daily Volume and LOS

<table>
<thead>
<tr>
<th>No.</th>
<th>Roadway Segment</th>
<th>Existing Daily Volume</th>
<th>Existing LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polk Street, between Gladstone and Fenton Avenue</td>
<td>11,838</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>Hubbard Street, between Gladstone and Fenton Avenue</td>
<td>28,952</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Maclay Avenue, between Gladstone and Fenton Avenue</td>
<td>11,444</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Eldridge Avenue, west of Hubbard Avenue</td>
<td>8,174</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>Eldridge Avenue, east of Pasha Street</td>
<td>8,369</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Eldridge Avenue, East of Gridley</td>
<td>4,882</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>Harding Street, north of Eldridge Avenue</td>
<td>2,143</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>Maclay Avenue, south of Harding Street</td>
<td>6,706</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>Harding Street, south of Eldridge Avenue</td>
<td>2,518</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>Maclay Avenue, west of SIBL Way (driveway to Sylmar Independent Baseball League)</td>
<td>6,590</td>
<td>B</td>
</tr>
</tbody>
</table>
3.18.2 Environmental Consequences

3.18.2.1 Methodology

The traffic analyses prepared for this study were performed in accordance with City of Los Angeles Department of Transportation (LADOT) “Guidelines for Traffic Impact Analysis Reports” and the Los Angeles County Congestion Management Program (CMP) requirements. Detailed information on intersection analysis methodologies, standards, and thresholds are discussed in the following sections. The following scenarios were analyzed as a part of this study:

- Existing Conditions – utilized to establish the current level or existing baseline of traffic operations within the study area.
- Future Year (2015) Base Conditions with No Project (including Ambient Growth and Cumulative Projects) – establishes a future baseline scenario against which traffic generated by the 2009 LAMC Facilities Master Plan is compared.
- Future Year (2015) Base with Project Conditions – represents future base traffic conditions with the addition of projected trip generation associated with the 2009 Facilities Master Plan above the amounts associated with the 2007 LAMC Facilities Master Plan.

Peak Hour Intersection and Roadway Standards

This section presents the methodologies used to perform peak hour intersection capacity analysis, including both signalized and unsignalized intersections.

Signalized Intersection Analysis

The analysis of signalized intersections utilized the analysis procedure as outlined in the LADOT “Guidelines for Traffic Impact Analysis Reports.” This procedure is known as Transportation Research Board Critical Movement Analysis (CMA), Circular 212 Planning Method methodology and defines LOS in terms of Volume-to-Capacity (V/C) ratio. This technique uses 1,600 vehicles per hour per lane (VPHPL) and 2,880 (VPHPL) for dual left turn lanes as the maximum saturation volume of intersections. The computerized analysis of intersection operations was performed utilizing Traffix 7.6 traffic analysis software (Dowling Associates, 2003).

Unsignalized Intersection Analysis

Unsignalized intersections, including two-way and all-way stop controlled intersections were analyzed using the 2000 Highway Capacity Manual (Section 10) unsignalized intersection analysis methodology. The LOS for a two-way stop controlled (TWSC) intersection is determined by the computed or measured control delay and is defined for each minor movement. Table 3.18-5 summarizes the LOS criteria for unsignalized intersections.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.18 Traffic

Table 3.18-5 Level of Service Criteria for Stop Controlled Unsignalized Intersections

<table>
<thead>
<tr>
<th>Average Control Delay (sec/veh)</th>
<th>Level of Service (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>A</td>
</tr>
<tr>
<td>>10 and <15</td>
<td>B</td>
</tr>
<tr>
<td>>15 and <25</td>
<td>C</td>
</tr>
<tr>
<td>>25 and <35</td>
<td>D</td>
</tr>
<tr>
<td>>35 and <50</td>
<td>E</td>
</tr>
<tr>
<td>>50</td>
<td>F</td>
</tr>
</tbody>
</table>

The County of Los Angeles considers LOS D or better during the AM and PM peak hours to be the maximum acceptable intersection LOS. This is consistent with the approach outlined in the Los Angeles County CMP.

Intersection and Roadway Standards

The County’s standards for limiting increases in Volume to Capacity (V/C) ratios at intersections are shown in Table 3.18-6.

Table 3.18-6 Standards for Limiting Increases in Intersection Volume to Capacity Ratios

<table>
<thead>
<tr>
<th>Intersections</th>
<th>Pre-project V/C</th>
<th>Project V/C Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.701 to 0.800</td>
<td>0.040 or more</td>
</tr>
<tr>
<td>D</td>
<td>0.801 to 0.900</td>
<td>0.020 or more</td>
</tr>
<tr>
<td>E/F</td>
<td>0.901 or more</td>
<td>0.010 or more</td>
</tr>
</tbody>
</table>

Source: LADOT “Guidelines for Traffic Impact Analysis Reports”

Standards for limiting project related increases in average daily traffic (ADT) volumes on local residential streets are shown in Table 3.18-7.

Table 3.18-7 Standards for Limiting Increases in Intersection Volume to Capacity Ratios

<table>
<thead>
<tr>
<th>Projected ADT with Project (Final ADT)</th>
<th>Project-Related Increase in ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 999</td>
<td>16 percent or more of final ADT</td>
</tr>
<tr>
<td>1,000 or more</td>
<td>12 percent or more of final ADT</td>
</tr>
<tr>
<td>2,000 or more</td>
<td>10 Percent or more of final ADT</td>
</tr>
<tr>
<td>3,000 or more</td>
<td>8 percent or more of final ADT</td>
</tr>
</tbody>
</table>

Source: LADOT “Guidelines for Traffic Impact Analysis Reports”

Trip Generation and Distribution

Maximum future trips expected to be generated from both the ACOE and LACCD Athletic Field properties in 2015 during AM and PM peak hours are shown in Table 3.18-8. Consistent with current college trip distribution patterns, future LAMC 2009 Facilities Master Plan generated trips were assigned to the surrounding local and regional roadway system using residential zip code information provided to the college by each student enrolled. Using this information, land use patterns, and the roadway and freeway networks; a percentage of students traveling on study area arterials and freeways were determined. Based upon the project site location in relation to the surrounding roadway system, peak hour trips were assigned to the adjacent roadway network based upon these percentages.
3.18 Traffic

Table 3.18-8 2015 Project Trip Generation

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Maximum Usage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

3.18.2.2 Proposed Action

Short-Term Impacts

Construction of the ACOE and LACCD Athletic Fields sites is expected to have some effect on traffic in the immediate vicinity for approximately one year. Light vehicle traffic would occur from up to 45 to 50 construction workers who would be working on the site each day. Truck traffic would occur from removing approximately 11,204 cubic yards of soil and importing 28,300 cubic yards of fill. There would also be 4,500 cubic yards of 500 pound rock brought onto the site for embankment support. Grading of the site would not last more than 45 days. Construction would require no more than 5 truck trips per hour carrying an average of 15 to 17 cubic yards of soil per truck. Hauling trucks carrying fill would be limited to operation between 9:30 a.m. and 3:30 p.m. each day and would utilize Maclay Avenue to access the construction site. A maximum of 30 truck trips are expected per day. Other construction vehicles would operate during the construction hours of 7 a.m. to 9 p.m. and from 7 a.m. to 6 p.m., in accordance with City of Los Angeles requirements. This temporary increase in construction traffic would not cause Maclay Avenue or other more remote streets to exceed the level of service standards for these roadways.

Construction activity would result in temporary reductions in access in and around the construction locations. Access impacts resulting from construction of the Athletic Fields would be resolved through implementation of a Construction Traffic Management Plan. This plan would minimize temporary impacts involving hazards, emergency access, transit, and alternative transportation.

Parking for construction vehicles would be sufficient at the Athletic Fields, or temporarily along Maclay Avenue. Parking at locations adjacent to the Athletic Fields, including the Sylmar Independent Baseball League (SIBL), would not be impacted during construction. No impacts related to parking would occur.

Long-Term Impacts

Long-term impacts include impacts to intersections, levels of service for designated roads, hazards, emergency access, parking, transit, and alternative transportation.

Intersection Impacts

In the study year 2015, trips generated by students at LAMC would not exceed standards at any intersections except that during PM peak hours, the LOS F is expected to be reached at two intersections:

- Maclay Avenue/Harding Street
- Maclay Avenue/I-210 Westbound Ramp
Installation of a signal at the Maclay Avenue/Harding Street intersection is planned, which would improve the LOS from F to C and would improve the intersection so it would meet standards. Improvements to the Maclay Avenue/I-210 Westbound Ramp could be made by Caltrans, but the area is constrained by encroaching land uses. In any case, adverse effects to congestion at this location are expected with or without the Proposed Action as traffic increases in the area from a variety of sources.

Roadway Impacts

No roadway segments are expected to experience increases in average daily traffic above standards as a result of the proposed project.

Hazards Impacts

Operation of the Athletic Fields would not cause an increase in hazards that is considered substantial. College related traffic is a compatible use for roadways surrounding the College. Therefore, no hazards impacts are expected.

Emergency Access Impacts

Emergency access in the area surrounding the Athletic Fields would remain adequate during operation. The project site provides access that is adequate for emergency vehicles. The Athletic Fields site provides adequate internal turning radii for emergency vehicles to turn around and adequate egress capacity in the event of an emergency requiring evacuation. In addition, Athletic Fields activities would not result in roadway closures or detours. Therefore, no project impacts to emergency operations are expected.

Parking Impacts

Development of the Athletic Fields site would add at least 163 parking spaces to the proposed 2,538 parking spaces the College is planning to provide by 2015. Since peak demand is expected to be 150, parking would be adequate for this location.

Transit Impacts

To improve traffic flow and transit access to the college, MTA bus stop improvements including bus driver lay over support, have previously been developed at the corner of Hubbard Street and Eldridge Avenue. Under the LAMC 2007 Facilities Master Plan, an additional bus stop is being planned at the East Campus entrance that will provide additional access to those accessing the Athletic Fields. From the existing bus stop at the corner of Hubbard Street and Eldridge Avenue, MTA buses would drive east on Eldridge to the new stop at the East Campus and then return west along Eldridge to Hubbard to continue along the route. The recently developed bus stop improvements and the new East Campus bus stop are intended to expand transit facilities and provide a more comfortable user environment to encourage students to use transit to reach the college and Athletic Fields. These bus stops are included under the LAMC 2009 Facilities Master Plan.

Alternative Transportation Impacts

Development of the LAMC 2009 Facilities Master Plan would also improve alternative transportation through enhanced pedestrian facilities along Eldridge Avenue, enhanced pedestrian
facilities at the intersections of Harding Street and Eldridge Avenue and Harding Street and Maclay Avenue, and through improved transit services. These improved services would improve alternative transportation access to and from the Athletic Fields.

Impact Summary

Impacts to traffic would not be significant because the temporary increase in construction traffic would not cause Maclay Avenue or other more remote streets to exceed the level of service standards for these roadways; access impacts resulting from construction of the Athletic Fields would be resolved through implementation of a Construction Traffic Management Plan; and parking for construction vehicles would be sufficient at the Athletic Fields, or temporarily along Maclay Avenue. Parking at locations adjacent to the Athletic Fields, including the Sylmar Independent Baseball League (SIBL), would not be impacted during construction.

Operational impacts would not be significant because installation of a signal at the Maclay Avenue/Harding Street intersection would improve the LOS from F to C; no roadway segments are expected to experience increases in average daily traffic above standards; operation of the Athletic Fields would not cause an increase in hazards that is considered substantial; emergency access in the area surrounding the Athletic Fields would remain adequate during operation; development of the Athletic Fields site would provide adequate parking; improved alternative transportation services would provide better access to and from the Athletic Fields.

Cumulative Impacts

Past projects including Mountain Glen Terrace, SIBL ballfields, El Cariso Community Regional Park and Golf Course have added to existing traffic in the area. Existing traffic conditions that have resulted from these cumulative past projects are summarized above in Section 3.17.2.2 Cumulative Impacts.

The size and location of future planned projects that may affect future cumulative traffic conditions are listed in Table 7-3. Cumulative impacts from future operation of the Athletic Fields and increases in area traffic due to other future sources would occur along two roadway segments:

- Hubbard Street, between Gladstone and Fenton Avenue
- Maclay Avenue, between Gladstone and Fenton Avenue

The LACCD plans to implement measures to reduce these impacts to traffic on Hubbard Street and Maclay Avenue. These measures include widening both Maclay Avenue and Hubbard Street by one-lane in each direction as well as restricting future growth along these streets to reduce daily traffic volumes.

3.18.2.3 Development of LACCD Property Only

The development of the LACCD property only would result in a reduction in the amount of traffic during construction compared to the proposed project. Either the number of vehicle trips incurred by construction workers and equipment or the duration of their use would be reduced, as would the amount of soils hauled to and from the site.
This alternative would not provide temporary parking for the Health, Fitness and Athletics Building on LAMC’s East Campus. Inadequate parking would cause users to seek parking on surrounding roadways including Maclay Street and Eldridge Avenue. As a consequence, this alternative would result in long-term impacts from inadequate parking along Maclay Street and Eldridge Avenue until new parking is developed at that site.

During operation, compared to the proposed project, this alternative would result in about 75 fewer PM peak hour trips generated in 2015 under the LAMC 2009 Facilities Master Plan, assuming that trips would be generated equally between the ACOE and LACCD Athletic Field sites.

3.18.2.4 No Action

The No Action alternative would eliminate traffic due to construction in the immediate area that would occur under the proposed project.

This alternative would not provide temporary parking for the Health, Fitness and Athletics Building on LAMC’s East Campus. As a consequence, this alternative would result in long-term impacts from inadequate parking along Maclay Street and Eldridge Avenue until new parking is developed at that site. During operation, compared to the proposed project, this alternative would result in about 150 fewer PM peak hour trips generated in 2015 than the total number of trips expected to be generated under the LAMC 2009 Facilities Master Plan.
3.19 Aesthetics

3.19.1 Affected Environment

The existing visual condition in April 2009 is the baseline for assessing the intensity and sensitivity of visual impacts and is addressed only relative to critical public views. Such views are those 1) that are readily available to the public, including a private views from a substantial group of people; 2) where there are indications the public would be substantially concerned over adverse changes to the views; and 3) in which the proposed project would be substantially visible.

Critical Public Views

Technical Approach

Identifying critical viewing positions involves first identifying sensitive public views in the area, and then ensuring that they include views of the project. To identify sensitive public views, indicators of public concern over adverse changes to visual quality are used to rate potential public sensitivity. The degree of visual sensitivity is treated as occurring at four levels.

- **High Sensitivity.** A highly sensitive public can be expected to react strongly to any lessening of visual quality. This may be because the affected views are rare, unique, or in other ways are special and highly valued in the region or locale.

- **Moderate Sensitivity.** The potential for public concern over adverse change in scenic/visual quality is appreciable. Affected views tend to be secondary in importance or similar to views commonly found in the region or locale.

- **Low Sensitivity.** There is some indication that at least a small—but vocal—minority of the public values the potentially affected view and would be concerned over impacts on its condition (quality).

- **No Sensitivity.** There is no sensitivity where the potentially affected views are not “public” (not accessible to the general public) or because there are no apparent indications that the affected views are valued by the public.

A review of literature, maps, County planning documents, and an inspection of the project site and the potentially affected environs were conducted in order to identify indicators of public sensitivity. Sensitive public views in which the proposed facilities would be most noticeable were selected for detailed analysis. “Noticeability” is a function primarily of proximity and visibility of project features. Consideration was also given to choosing views that are representative of the public experience; i.e., that they be from viewing positions accessible by the public and readily located, based on the description and photographs presented in the analyses.

The other factor affecting whether views may be considered to be critical public views is the degree to which they would include views of features of the proposed project. In the case of this assessment, exposure to the project’s features was determined first by field inspection and then by simulation.

Critical Public Views of Proposed Athletic Fields

Figure 3.19-1 (Viewpoint Location Map) is an aerial photo showing the project’s location in relation to surrounding land uses and the viewing positions selected to represent critical public views. The
most sensitive views of land uses relative to this visual analysis are those from three residential areas, proximate stretches of roads that are their primary access routes, and certain recreation land uses (El Cariso Golf Course and a pedestrian path leading from El Cariso County Regional Park). Sensitivity of views of these areas is considered to be high.

The proposed Athletic Fields would be fully exposed to views from Mountain Glen Terrace subdivision to the southeast and seen to a lesser degree from Santiago Estates to the east. The closest viewing distances for these two subdivisions are about 900 feet and 1400 feet away from the nearest playing field in the proposed complex, respectively. Additionally, it would be within the foreground of views from part of El Cariso Golf Course and its perimeter pedestrian path connecting El Cariso County Regional Park with Eldridge Avenue. Sensitivity for these views is high.

The views most critical to the assessment are those that are closest and most exposed to the proposed playing fields. Figure 3.19-2 (View of Athletic Fields Site from Mountain Glen Terrace) shows views along Harding Street and Mountain Glen Terrace. The lower image in Figure 3.19-3 (Athletic Fields Site Views – Existing, bottom), a view towards the site of the Athletic Fields Complex from Maclay Street, is a photograph taken from a point about 1,200 feet south of the nearly-completed Health, Fitness & Athletic Complex building at the East Campus. Mountain Glen Terrace, Santiago Estates, and the site for the proposed playing fields are noted in this image. The upper image in Figure 3.19-3 (Athletic Fields Site Views – Existing, top), a view of Mountain Glen Terrace, is a photograph taken from a point near where the diamond for the baseball field would be located.

Viewing Positions 1-6 (Figure 3.19-1 Viewpoint Location Map) show views of the Athletic Fields Complex area. The view in Figure 3.19-2 (View of Athletic Fields Site from Mountain Glen Terrace) is the panorama from the southwest to the northeast seen from Viewing Position (VP) - 1, looking across the Pacoima Wash toward the site for the proposed playing fields. The softball and baseball fields would be about 900 feet and 1200 feet away in this view, respectively. It is a largely unobstructed view used to represent views from points closest to the proposed playing fields that are along Harding Street, the entrance roads serving the Mountain Glen Terrace subdivision, and from homes within the subdivision. The view from Maclay is considered less important, inasmuch as the site for the Athletic Fields is hidden and the views more distant than those noted. The Maclay Street viewing position is over 1900 feet from the site for the nearest playing field. VP - 1 is located north of Vista del Sol Drive, the south entrance to the subdivision, at the top of a landscaped bank above the road and next to a screen wall protecting the privacy of the first floor of the adjacent homes.
Figure 3.19-1 Viewpoint Location Map
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-2 View of Athletic Fields Site from Mountain Glen Terrace
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-3 Athletic Fields Site Views – Existing
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Eye level is about 13 to 15 feet above the road and about 10 feet lower than the second floor of the closest tier of homes. This viewing position was selected as a compromise in elevation to represent not only the views from Harding Street and Vista del Sol Drive, but also those from the second floor of these residences. Note that a wall protects the first floor of these homes from views toward the proposed project. This view represents a class of views that are representative of this area, and therefore are considered to be public.

Figure 3.19-4 (View of Existing Athletic Fields from VP – 2 Mountain Glen Terrace) shows the panorama from VP - 2, situated similarly to VP - 1. It is at the top of the landscaped slope and at the base of the screen wall providing privacy for homes to the east. The difference illustrated is the extent to which a grove of trees blocks views of the site for the playing fields. This view would not, accordingly, be considered to be critical, and is therefore not analyzed further. It does, however, illustrate the mitigating value of screen plantings.

Views from recreation land uses for which the public routinely expects aesthetic physical surroundings—such as the El Cariso Golf Course—are treated as highly sensitive. This category includes the pedestrian path that leads from, and to, El Cariso Regional County Park and which flanks the northerly side of the proposed Athletic Fields Complex. Views from recreation trails and paths serving as a primary pedestrian access to designated areas of recreational interest are highly sensitive. VPs - 3, 4, 5 and 6 represent views from along the part of the path closest to the site for the proposed playing fields. Given that this path flanks the golf course, views from these points also represent the most critical views from within the golf course. Figure 3.19-5 (View of Existing Athletic Fields Site from VP-3 Golf Course) shows the panorama from VP - 3, looking northeast to southeast; the lower image is a continuation of the view shown in the upper image. These images also serve in showing the extent of residential development to the east and northeast of the proposed Athletic Fields Complex, particularly including Mountain Glen Terrace, best shown in the lower image (and in Figure 3.19-3 Athletic Fields Site Views – Existing, bottom). Figure 3.19-6 (Views of SIBM and Athletic Fields Site – Existing) presents views from VPs - 4 and 5, looking east and southeast, respectively. The playing field facilities seen from VP - 4 (SIBM) abut the northern boundary of the proposed playing fields, which would be in the immediate foreground of the view from VP - 5. Figure 3.19-7 (Views of Golf Course – Existing), is a view toward the golf course from VP - 6. While VPs - 4 and 6 provide context for VP - 5, they do not have as prominent views of the project site, so they are not analyzed further.

Existing Visual Conditions

Visual conditions include landscaping and lighting. The existing visual condition of the area is assessed in terms of the character of features or lighting sources of within public view, the degree to which such features and light sources are congruent with the dominant character of the setting, the coherence and harmony of the pattern of these features and lighting sources, and the extent to which historically available scenic views are blocked or are inaccessible to the public. In each case, visual conditions are evaluated as being within one of four Visual Modification Classes.

- **Visual Modification Class 1** conditions, the highest quality landscapes, occur where all features and their distribution, as well as sources of lighting, appear to be characteristic of the established setting, and past actions have not introduced incongruous changes, altered viewing conditions, or adversely affected the coherence of the landscape or lighting.
• **Visual Modification Class 2** conditions occur where adverse changes in the landscape and/or lighting are noticeable but subordinate to the features characteristic of the area; these changes may attract some attention, but they do not compete for it with other features in the field of view; and/or historically available scenic views may have become partly blocked or less inaccessible.

• **Visual Modification Class 3** conditions occur where adverse changes in the landscape and/or lighting are distracting to the point they compete for attention with other features in view; and/or historically available and scenic views have become largely blocked and/or inaccessible.

• **Visual Modification Class 4** conditions occur where incongruous features introduced by past actions dominate attention, or patterns natural to the area have been altered to the point of incoherence; historically available scenic views have been totally blocked or made inaccessible; and/or lighting has been altered to the point of dominating attention or causing glare.

Existing landscape and lighting conditions within critical public views in the project area are defined in terms of the visual modification classes below.

Existing Visual Conditions within Critical Public Views – Landscapes

VP - 1 and 2: Harding Street and Mountain Glen Terrace

VP - 1 represents the most critical public viewing position along Harding Street and Mountain Glen Terrace. Position 1 is at the top of the landscaped slope along the east side of the street, at the base of the screen wall shown in Figure 3.19-3 (Athletic Fields Site Views – Existing, top). Note that the screen wall ends after the fourth house south of Vista del Sol Drive, so the view represents what may be seen from the ground floor of some homes. For the rest, this view represents second-floor views.

The frame of reference for this view is the residential character type for the lands in which the viewing positions are located. The character of what is viewed from there, however, is predominately the natural appearance of the Pacoima Wash. El Cariso Golf Course is noticeable only due to its peripheral groves of tall trees, so it complements the natural character in view. The wash and golf course present a visual buffer between the residential land uses and the Public Facilities/Institutional land uses of the College to the west. That buffer is complete, but for the new building at the East Campus, which is variably apparent depending on the viewing direction.

Relative to a residential character type, a natural appearing landscape within a field of view of, and/or from, a development is not treated as incongruous. It would bear a similar positive visual relationship to the residential area as a park. Some residents may consider natural open space more visually positive than an active park. The institutional appearance of the East Campus building, though, is incongruous with both the residential character of Mountain Glen Terrace and the natural appearing setting, dominating views towards the southwest, competing for attention in views to the west across the Pacoima Wash, but being a peripheral feature (subordinate) in views to the north. As pertains to congruence (intactness), the existing visual conditions range from **Visual Modification Class 4**, to **Class 3**, to **Class 2** as one directs attention to the southwest, west and north, respectively.
Figure 3.19-4 View of Existing Athletic Fields Site from VP – 2 Mountain Glen Terrace
Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-5 View of Existing Athletic Fields Site from VP – 3 Golf Course
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-6 View of SIBL and Athletic Fields Site – Existing
Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-7 Views of Golf Course – Existing
Blank Page for Back of Figure
Whether the distribution of features in view is “coherent” or not is relevant only to views where the natural character predominates, in this case views to the northwest. In studying the lower image in Figure 3.19-3 (Athletic Fields Site Views – Existing, bottom), the organization of the landscape is readily apprehended. The open fields in the foreground end abruptly at the edge of the riverbed, a grove of trees on the far side mark the transition to the golf course, and finally the distant San Gabriel Mountains frame the view to the northwest. In this view, features are judged to be coherently arrayed. Regarding visual access, past actions appear not to have impeded views of the Pacoima Wash and the San Gabriel Mountains. Available public vantage points have, if anything, been afforded by the residential development and streets in the area. Existing conditions, as pertain to visual access, are considered to be Visual Modification Class 1.

VPs – 3-6: Pedestrian Path and Golf Course

The pedestrian path along which VPs - 3 and 5 are located is at the interface of three character types. As the path draws near to Eldridge Avenue, it becomes elevated above the Pacoima Wash and views become panoramic and distant, embracing the residential developments to the east and northeast, as well as the San Gabriel Mountains defining the horizon (Figure 3.19-5 View of Existing Athletic Fields Site from VP - 3 Golf Course). The primary impression of the foreground and background is of a natural-appearing area along the Pacoima Wash and in the distance. However, the residential development within Mountain Glen Terrace and Santiago Estates is incongruous with this character type. Moreover, disturbance to the distribution of vegetation in the foreground of the view in Figure 3.19-5 (View of Existing Athletic Fields Site from VP - 3 Golf Course) has perceptibly lessened the natural appearance. Relative to the San Gabriel Mountains and the Pacoima Wash, the residential areas and the foreground disturbance compete for attention with the natural-appearing features, and the existing visual condition for VP - 3 is Visual Modification Class 3.

From VP - 4, El Cariso Golf Course is on one side and the SIBL playing field facilities are on the other (Figure 3.19-6 Views of SIBL and Athletic Fields Site – Existing, top), both being an expression of active recreation. The golf course, however, is more park-like in its setting, while the SIBL fields are more closely linked visually with urban recreation facilities. Further to the south, from VP - 5 (Figure 3.19-6 Views of SIBL and Athletic Fields Site – Existing, bottom), the partially visible undeveloped lands adjacent to the Pacoima Wash characterize the setting to the east-southeast and the golf course dominates views to the west. The golf course and the open space to the east are congruent with one another, given the park-like setting of the links and copses of trees in view. The condition of these sequentially linked views is therefore compatible in this area (Visual Modification Class 1).

The coherence of the pattern of landscape features would be relevant solely to the view from VP - 5. They are in a simple arrangement in these views; the golf course lines one side of the path, the undeveloped lands line the other. Nothing is distracting in this configuration.

Regarding visual access, development of the SIBL playing fields has obstructed views across the Pacoima Wash to the east, and the hills that otherwise would be visible have been substantially blocked from view (Visual Modification Class 3). However, from points along the path from there to the southwest (Figures 3.19-5 View of Existing Athletic Fields Site from VP - 3 Golf Course and Figure 3.19-6 Views of SIBL and Athletic Fields Site – Existing, bottom), views of the hillsides to the southeast are unimpeded by past actions (Visual Modification Class 1).
Existing Visual Conditions within Critical Public Views – Light and Glare

In the project vicinity there is a mix of nighttime illumination from sources associated with an urban area. This includes illumination associated with residential land uses along Hubbard Street, Eldridge Avenue, Macay Street and Harding Street, such as are emitted from the homes in the area, streetlights, and vehicles. The existing Mission College facilities produce ambient lighting from parking lots, security facilities, and building signage. Additionally, the playing fields at the County Park are equipped with ball field lighting, and the tennis courts there are routinely lighted in the evening. The El Cariso Golf Course driving range is illuminated for play until closing (6:00 p.m. on Tuesdays and 7:00 p.m. on Wednesdays through Mondays [LAMC, 2005]).

Figure 3.19-8 (Night View of Athletic Fields – Existing, top and bottom) shows the existing nighttime view of the proposed playing fields from VP - 1. As noted, this viewing position was chosen to represent the most critical views (the sensitive public views most exposed to proposed project features) from the neighboring streets and residential areas. As demonstrated, the principal source of night lighting is the array of street lights along Harding Street in the foreground, as well as vehicle headlights. The site for the proposed playing fields, except for one source of lighting associated with the SIBL playing fields (far right side, lower image), has no onsite source of night lighting. The largely blocked lighting for the El Cariso Golf Course driving range is barely visible (center-right, lower image), and security lighting at the Health, Fitness and Athletic Complex is apparent to a minor degree. Finally, distant residential development along the foothills of the San Gabriel Mountains is noticeable but unobtrusive. The net impression of the proposed site for the playing fields is that it is devoid of night lighting and not appreciably affected by sources of light in its vicinity. The type of lighting in the vicinity of the Athletic Fields Complex site is characteristic of an urban environment and is distributed in a coherent pattern consistent with the land uses observed from each Viewing Position. Night lighting from adjoining land uses does not appreciably intrude on the unlighted site for the playing fields. The existing night lighting condition for all portions of the project site, therefore, is considered to be Visual Modification Class 1.

3.19.2 Environmental Consequences

3.19.2.1 Methodology

The intensity of an impact is addressed as the degree to which visual conditions change adversely relative to existing (baseline) conditions (April 2009). Visual conditions are described in terms of Visual Modification Classes. For example, a reduction from existing (baseline) conditions of VMC 1 to VMC 2 is a level 1 impact intensity; a reduction from VMC 1 to VMC 3, is a level 2; and a reduction from VMC 1 to VMC 4 is a level 3 impact intensity. The intensity of a visual impact is a function of how apparent the proposed project’s features may be within their context (e.g., barely noticeable versus visually dominant). The significance of the impact depends on the degree to which visual conditions change, the duration of the change, and the sensitivity of the view affected (Table 3.19-1).
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-8 Night View of Athletic Fields – Existing
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Blank Page for Back of Figure
In estimating the intensity of potential visual impacts, several factors affecting the context of views are considered: viewer activity; primary viewing direction(s); viewing distance; project exposure; duration of any given viewing “event” (as distinguished from the overall period of time an impact would endure); relationship of the subject view to the sequence available; the presence of existing features of competing visual interest; and established features tending to draw attention toward the proposed project facilities (focal point sensitivity).

Photo-simulations (visual simulations) are used to assist in determining the intensity of visual impact. These are realistic computer-generated three-dimensional images of a proposed project. They simulate project features as they would be seen in the context of critical views and under specific viewing conditions matching baseline photographs of the same views. Baseline photographs were taken to represent the maximum exposure of the proposed project within critical public views and which would occur under the better viewing conditions within the range prevailing for the potentially affected views. For the subject analyses, baseline photographs were taken on relatively clear days without substantial fog or haze. Details regarding the camera used for the base photograph were recorded and later emulated by the computer program used for the simulation. A Global Positioning System was used to identify both the location and elevation of the camera lens. These data were used to correlate the viewing position in the computer simulation image with the baseline condition photograph.

Based on visual simulations, the proposed project’s physical attributes were considered in relation to those for the features of the affected landscape. The level of contrast potentially exhibited by the proposed project and its compatibility with its context were thereby evaluated.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

<table>
<thead>
<tr>
<th>Intensity of Impact</th>
<th>Visual Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Level 1</td>
<td>PS³</td>
</tr>
<tr>
<td>Level 2</td>
<td>PS</td>
</tr>
<tr>
<td>Level 3</td>
<td>PS</td>
</tr>
</tbody>
</table>

Source: Table H-2, Appendix B

Notes:
1. High Sensitivity (H): The potential for public concern over adverse change in scenic/visual quality is great. Affected views are rare, unique, or in other ways are special and highly valued in the region or locale. Any perceptible change in visual conditions would be considered to be a significant lessening of visual quality.

2. Moderate Sensitivity (M): The potential for public concern over adverse change in scenic/visual quality is substantial. Affected views are secondary in importance or similar to views commonly found in the region or locale. A moderately to highly intense visual impact would be perceived as a significant lessening of visual quality.

3. Low Sensitivity (L): Generally, there may be some indication that a small minority of the public has a concern over scenic/visual resource impacts on the affected area. Only the greatest intensity of adverse change in the condition of aesthetics/visual resources would have the potential to register with the public as a significant reduction in visual quality.

4. No Sensitivity (None): The views are not public, or there are no indications of public concern over, or interest in, scenic/visual resource impacts on the affected area.

3.19.2.2 Proposed Action

Short-Term Impacts

Short-term activities would entail the presence and movement of a workforce and heavy equipment during the day. Nighttime construction is not planned so there would be no emission of night lighting or glare. It is possible that cranes may be intercede in some views of the distant hillsides and mountains, but would do so for only brief periods. The workforce and heavy equipment would be distractingly dominant in the views from VPs - 1 – 6. However intense the visual impacts may be, though, they would be temporary, ending at the completion of the nine-month construction period.

Long-Term Impacts

View Obstruction

The Maclay Street viewing position (Figure 3.19-3 Athletic Fields Site Views – Existing, bottom), the angle of view to 70- and 90-foot-tall light standards at the baseball field (the closest field) would be 2 and 2.6 degrees, respectively. The angle of view to the foothills at the upper reach of residential development in line with that field is 3 degrees. Therefore, the tallest feature of the proposed playing fields, the field light standards, could not intercede in views of the lowest undeveloped hillsides, as seen from Maclay Street.

In the view from VP - 1 (eye level is at an elevation of about 1,338 feet), the angle of the line of sight to the top of 70- and 90-foot-tall light standards 900 feet away (the elevation of their base is about 1,322 feet) would be about 3.4 and 4.7 degrees, respectively. Lines of sight to the top of the mountains seen across the upper fields range from about 1.2 degrees (most distant mountains) to 4 degrees (closer mountains). Therefore, these light standards would project into and above the
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

mountains. Figure 3.19-9 (Proposed Athletic Fields – Day) is a simulation of the Athletic Fields Complex and shows the extent to which the light standards intervene in the mountain views, as compared to the existing conditions shown in Figure 3.19-10 (Panoramic View of Existing Athletic Fields Site from Mountain Glen Terrace - Day, top and bottom). The light standards are slender and present little mass, and the affected views are panoramic. To the right of the view in Figure 3.19-2 (View of Athletic Fields Site from Mountain Glen Terrace, top and bottom) lie a substantial part of the San Gabriel Mountains. Therefore, the light standards are judged not to appreciably interfere in views of mountains and hillsides from Mountain Glen Terrace (VP - 1).

Regarding the obstruction of views of open space, the proposed development of the Athletic Fields Complex would occur along the northwest side of the Pacoima Wash stream basin and flood plain, which is the “far side,” as seen from Harding Street and Mountain Glen Terrace (VPs - 1 and 2). The proposed facilities would not, therefore, obstruct views of this open space from there. Relative to views from Maclay Street, the site for the Athletic Fields Complex is not perceived as open space, being hidden from view (Figure 3.19-3 Athletic Fields Site Views – Existing, bottom). The question of view obstruction, as it pertains to open space, is moot relative to this view.

Views of hills to the southeast from VP - 5 (pedestrian path) have not been obstructed by past actions. The natural topography blocks sight of the lower reaches of these hills (Figure 3.19-6 Views of SIBL and Athletic Fields Site – Existing, bottom). No obstruction of hillsides and mountain views occurs relative to VP - 3 (Figure 3.19-5 View of Existing Athletic Fields Site from VP - 3 Golf Course), and the open space within the Pacoima Wash stream basin and flood plain remains unobstructed, as well. The existing visual condition, as it relates to visual access, is rated Visual Modification Class 1. With the development of the playing fields, the 70-foot-tall light standards would intercede in the views of the hillsides and San Gabriel Mountains, as shown in the simulations in Figures 3.19-11 and 3.19-12 (Athletic Fields Looking Northeast – Day, and Athletic Fields Looking to the Southeast – Day, bottom and bottom). The light standards would be slender structures with little mass and would not appreciably interfere with the dominance of the mountains and hillsides. While adverse, the impact is judged not to represent an obstruction of the existing views of the mountains and hillsides.

Visual Character and Quality

Site clearance and grading activities would occur across the currently open and natural-appearing 14.6-acre site for the Athletic Fields Complex. This would result in the removal of all vegetation from this area but would not substantially alter the topography, as it is already comparatively flat. Three playing fields and their supporting site facilities and amenities would be developed in this area, replacing the open and natural appearing site with an urban recreational facility. As such, the proposed facilities and structures cannot be designed to “integrate” with a natural character that is eliminated.

Figure 3.19-9 (Proposed Athletic Fields – Day) shows a simulation of the playing fields and facilities, while Figure 3.19-10 (Panoramic View of Existing Athletic Fields Site from Mountain Glen Terrace – Day, top and bottom) is the existing condition of the site. Relative to VPs - 1 and 2, the current visual condition is rated as Visual Modification Class 3 due to the highly visible and incongruous Athletics, Health and Fitness Complex building at the East Campus. With the completion of the Athletic Fields Complex’s playing fields and supporting facilities and amenities, it would, together with the Health, Fitness and Athletics Complex building, become the focus of attention in the panorama shown in Figure 3.19-9 (Proposed Athletic Fields – Day). Together, the building and
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

playing fields would become the subject of the view, dominating attention, and creating a visual condition that would be **Visual Modification Class 4**. The reduction from Class 3 to Class 4 is a visual impact that would be a level 1 in intensity (a change of one class rating); seen from a highly sensitive viewing position, it would be perceived as a substantial reduction in visual quality. It would, therefore, represent a direct and long-term adverse visual impact.

Relative to VP - 3, the existing condition of the view (Figure 3.19-11 Athletic Fields Looking Northeast – Day, top) is rated **Visual Modification Class 3**. This is due to the co-dominance of the Mountain Glen Terrace and Santiago Estates subdivisions and the disturbance of natural vegetation in the foreground, seen in the context of the otherwise natural appearing Pacoima Wash and its floodplain. With the completion of the Athletic Fields Complex, the playing fields, parking lot (with its canopy of solar cells), and other support facilities and amenities would be in the immediate foreground (Figure 3.19-12 Athletic Fields Looking to the Southeast - Day, bottom). These Project features would be incongruous with the partially natural appearing existing character of the site and would dominate attention. The visual condition would change from **Visual Modification Class 3** to **Class 4**. Such a level 1 intensity of impact (a change of one class rating) seen within a highly sensitive view would represent a direct and long-term adverse visual impact.

From VP - 5, the existing visual condition of the view (Figure 3.19-12 Athletic Fields Looking to the Southeast – Day, top) is rated **Visual Modification Class 1**. From there to the riparian area that will be remain protected under the proposed project, open, natural-appearing space occurs to the left and the compatible park-like setting of El Cariso Golf Course is to the right (Figure 3.19-7 Views of the Golf Course – Existing, top). Once the facilities are completed, the soccer and softball fields, bleachers and support facilities, parking lot and solar cell canopies, and the 70- to 90-foot-tall field lights would be in the foreground of views from this stretch of pathway. The currently natural character in views to the east and southeast would therefore be supplanted by these Project features, dominating attention in the foreground. Visual conditions would therefore change three class ratings to **Visual Modification Class 4**, representing an intensity level 3 impact. Within a highly sensitive view, this would be considered to be a direct and long-term adverse visual impact.

Nighttime Light and Glare

Advanced field and parking lighting systems with no over-spill technology would accommodate games extending into the evening hours. The lighting design has not yet been finalized. Based on conceptual plans and the architectural night-view rendering in Figure 3.19-13 (Aerial View of Athletic Fields – Lighting Design, bottom), there would be the following: 22 flood lights for the three playing fields; 6 lights for the baseball field parking area; an undefined number of lights for the parking lot serving the soccer and softball fields; 11 lights along the main entry road; and 7 lights along the secondary road leading to the baseball field parking lot. Based on tentative information, the field lighting would range from 70 to 90 feet high.

The consideration of night lighting produced by the Athletic Fields Complex focuses on critical viewing positions located in an arc from the east to the southwest. Views from El Cariso County Regional Park were not considered inasmuch as the night lighting at the Fields Complex would be well shielded by intervening trees. Views from within El Cariso Golf Course and the pedestrian path at its periphery are not relevant, as there is no provision for their use by the public at night, except for the golf course driving range, which is open seven days a week until 8:00 p.m.
Figure 3.19-9 Proposed Athletic Fields – Day
Blank Page for Back of Figure
Figure 3.19-10 Panoramic View of Existing Athletic Fields Site from Mountain Glen Terrace – Day
Blank Page for Back of Figure
Figure 3.19-11 Athletic Fields Looking Northeast – Day
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Blank Page for Back of Figure
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Figure 3.19-12 Athletic Fields Looking to the Southeast – Day
Blank Page for Back of Figure
Figure 3.19-13 Aerial View of Ball Fields – Lighting Design
Blank Page for Back of Figure
The plan for the field lights at Athletic Fields Complex has not yet been designed. However, the potential effect of night lighting for the development of playing fields there was addressed in a previous analysis of the LAMC Facilities Master Plan and Public Recreation Improvement Program (LAMC, 2005). For that project there was a completed lighting plan. That project included four softball fields, bleachers, two concession/restroom facilities buildings, a maintenance office and supply storeroom, parking and associated infrastructure. A total of 20 field light poles were to be installed, each 70 feet tall and each with from 6 to 20 light fixtures.

By comparison, the proposed project analyzed in this assessment entails development of three playing fields (a baseball field, softball field, and soccer field) and support facilities and amenities similar to those analyzed previously. Based on a preliminary concept plan, a total of 22 field lights would be installed. For the baseball field, their heights would be 70 feet for the infield and 80 to 90 feet for the outfield. Taller lights better direct lighting downward and, therefore, better control offsite light spill (Paul Austad, Musco Lighting, personal communication June 2009). This is because taller lights may be directed outward at a lesser angle than that needed by shorter lights to illuminate the same area of playing field. For the softball field it is assumed field lights would be 70 feet tall, as stipulated for the softball fields addressed in the previous study.

The field lighting to be used for the proposed project would be the latest in a succession of designs by Musco Lighting that improves on efficiency and control of offsite light spill, vertical illumination, and glare. Since 2005, fewer light fixtures are required for any given level of illumination as compared to earlier Musco designs. The analyses for the 2005 study were conducted prior to the latest design advances (Paul Austad, Musco Lighting, personal communication June 2009). Therefore, the project analyzed in 2005 addressed lighting that would have introduced more offsite and vertical light spill and glare on a per-field light basis. Moreover, the shorter softball field lights would have had a greater potential for horizontal spill, compared to the taller lights that would be used for the proposed baseball field, as noted above. The findings for the 2005 study accordingly would be “worst case” compared to the current project. In the absence of a lighting plan for the proposed playing fields, this analysis applies the 2005 study findings as a reasonable worst-case assessment.

The unit used to measure illumination, or light intensity, is the footcandle (fc). A footcandle is defined as the amount of light received by one square foot of a surface that is one foot from a point source of light equal to one candle of a certain type. Illumination is dependent on the illuminated surface’s distance from, and angle with respect to, the light source. The lighting system would be designed in accordance with the County performance criteria. Typical of lighting for a sports field, lighting for the Project would be designed with a light-loss percentage factor to account for dimming of lamps over time. Initial fc values would therefore exceed what is required of the playing fields. The 2005 analysis addressed this higher initial fc value and was a worst-case analysis as a result.

Due to the technical advances in lighting, field lights would be shielded and directed to preclude the nighttime illumination from directly spilling off-site. Although the lighting would be visible from off-site locations (see below), the light would be directed to the playing fields. Due to the design of the proposed lighting, no portion of the arc tube (lamp) would be visible from the critical off-site viewing locations identified for this assessment, particularly Harding Street and Mountain Glen Terrace. (There would be a direct line of sight available from these areas.) To a lesser extent, the lights would be seen from Maclay Street. However, the view from Harding Street (VP - 1) was chosen to represent the most critical street-based views that would include the playing fields.
Santiago Estates is at a distance and elevation such that views from there are not considered critical to the assessment.

The light and glare analysis in the 2005 study determined that the field lights would have emitted 0.01 fc at points 500 feet from the softball fields. A direct light level of 0.01 fc is too small to be detected by the human eye as glare, according to that analysis. VP - 1 is approximately 1,000 feet, 850 feet, and 830 feet away from the locations of the nearest field lights at the proposed baseball field, softball field and soccer field, respectively. Therefore, there would be no glare introduced by this worst-case lighting on the closest of the critical views evaluated.

Although the lamps would not be directly visible offsite due to the light control visors, the introduction of the playing field lighting would have some effect on surrounding land uses. Sports field lighting, due to its elevated nature and contrast with the dark sky and surrounding landscape, is typically noticeable for extended distances from the point of origin. For field lights directed toward the viewer, light would be reflected from the lower part of the reflector housing that would be seen from offsite points lower than the 70- to 90-foot-tall lights. Additionally, moisture in the night air close to the lights is illuminated such that it becomes noticeably illuminated. Finally, the surfaces illuminated by the field lighting would be visible from many points offsite. These include not only the playing fields, bleachers and support facilities, but also the light standards themselves. In the absence of mitigation, such lighting would create a source of noticeable ambient lighting in what is now an area devoid of light sources.

Figure 3.19-8 (Night View of Athletic Fields – Existing) shows the existing visual conditions at night, seen from VP - 1, located along Harding Street and close to the screen wall in front of the first tier of residences in the Mountain Glen Terrace subdivision. The existing condition of night lighting for this Project site is considered to be Visual Modification Class 1.

Figure 3.19-14 (Proposed Athletic Fields Looking from Southwest to the Northeast – Night) shows a visual simulation of the Athletic Fields Complex seen at night from the same position. The more noticeable source of illumination is the street lighting in the immediate foreground of the view shown. No night light sources presently occur within the site for the playing fields, and those from adjacent areas are unobtrusive. Though of comparatively low intensity when compared to the street lights, in the absence of mitigation, the field lighting would introduce ambient lighting that, in the absolute darkness of the existing site, would appear noticeable but subordinate to the street lighting in the foreground (Visual Modification Class 2). The intensity of impact would be Level 1 (a change of one class rating). With the introduction of screening, this impact would be greatly reduced (see Figure 3.19-15 Proposed Athletic Fields Looking from Southwest to the Northeast – Day).

Daytime Light and Glare

The materials of construction all support facilities and amenities are such that they would have an inherently low potential for reflection of sunlight upon ground positions in the vicinity. The photovoltaic (PV) solar cell installations to be installed over the parking lots would be made of a type of glass, which might intuitively seem to be highly reflective. However, the concept of efficient solar power is to absorb as much sunlight as possible while reflecting as little light as possible. Specifically, solar panels use "high-transmission, low-iron" glass, which absorbs more light, producing about half the glare and reflectance of standard glass, plastic and plexiglass, and about 10% of that for steel.
Figure 3.19-14 Proposed Athletic Fields Looking from Southwest to the Northeast – Night
Figure 3.19-15 Proposed Athletic Fields Looking from Southwest to the Northeast – Day
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Blank Page for Back of Figure
A separate consideration is whether the solar cells would be oriented such that they could reflect any degree of sunlight upon ground-based positions. There would be two PV system installations, mounted over the two playing field parking lots. For this analysis, the one mounted over the baseball field parking lot will be termed the “lower PV system,” while the one mounted over the softball/soccer field parking lot will be referred to as the “upper PV system.” While the two installations have not yet been designed, it is envisioned that the solar cell panels would be mounted on a number of panels, each basically a long, narrow rectangle. They would be mounted as shown in Figure 3.19-11 (Athletic Fields Looking Northeast – Day, bottom), tilted up and angled to the south.

Possible reflection has been considered relative to the critical viewing positions around the Fields Complex considered for detailed analysis. These would be VPs - 1, 3, and 5. Relative to VP - 1, reflection from the lower PV system toward that point could not occur until late in the afternoon when the sun would be due west and seen in line with the solar cells. The upper PV system is well to the northeast and could not, at any time of the day, be in line with the sun’s position relative to VP - 1 (see Figure 3.19-11 Athletic Fields Looking Northeast – Day, bottom).

The simulation shows that the lower PV system is due west but below a bluff and skyline of trees that would block the sun from shining on the solar panels late in the day.

Regarding VP - 3, the relevant PV system is the lower one, which would be immediately below the bluff and in the foreground (see the simulation in Figure 3.19-11 Athletic Fields Looking Northeast – Day, bottom). The upper PV system would not be in view from there, hidden by the riparian area separating the upper and lower playing fields. The angle of solar reflection is equal to the angle of incidence, so the sun would have to be at the same angle above the ground plane as the bluff for sunlight to be reflected there, and the sun rays would have to be directed toward the bluff.

However, it is not until later in the morning that the sun is high enough above the horizon to cause a reflection at an angle sufficient to reach the bluff, but at that time the direction of the sunlight is to the northwest, away from the bluff.

VP - 5, and all points along the pedestrian path to and just beyond the riparian area separating the sites for the upper and lower playing fields, are lower than the softball/soccer field parking lot, the upper PV system site. The PV system would be elevated above the parking lot, considerably higher than the pathway, and there could be no possibility for solar reflection upon any points along the path. Between the riparian area and a point near to the lower PV system, the pedestrian path would be north of the solar cells. The solar panels, being tilted 20 degrees vertically to the south, would reflect sunlight away from pedestrians.

To summarize, the two PV systems could reflect no sunlight upon ground-based observer positions, and there would be no adverse impact due to daytime light and glare.

Shadow Effects

There would be no shadow-sensitive land uses to the north, northwest, or northeast of the playing fields. Moreover, the light standards, while tall, would be slender. Having no appreciable mass, they would have no potential to cast substantial shadows. Therefore, development of the playing fields would have no impact as pertains to undesirable shading of land uses.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.19 Aesthetics

Consistency with Applicable Regulations

With the proposed screening measures, development of the Athletic Fields Complex would be consistent with Policy 5-1.1 of the Sylmar Community Plan:

“All encourage the retention of passive and visual open space, which provides a balance to the urban development of the Community.”

The site for the Athletic Fields is currently natural appearing open space, which would be maintained with the use of screening. Hence, development of the Athletic Fields Complex would be consistent with Policy 6.2.1 of the Sylmar Community Plan:

“All encourage compatibility in school locations, site layout and architectural design with adjacent land uses and community character and, as appropriate, use schools to create a logical transition and buffer between different uses, e.g., multiple family residential vs. single family residential or commercial vs. residential.”

Impact Summary

Impacts on aesthetics would not be significant because although the workforce and heavy equipment would be distractingly dominant during construction in the views from VPs - 1-6, they would be temporary, ending at the completion of the nine-month construction period.

The tallest feature of the proposed playing fields, the field light standards, would not intercede in views of the lowest undeveloped hillsides, as seen from Maclay Street. The proposed facilities would not obstruct views of open space. Due to the design of the proposed lighting, no portion of the arc tube (lamp) would be visible from the critical off-site viewing locations identified for this assessment, particularly Harding Street and Mountain Glen Terrace. There would be no glare from VP-1 introduced by this worst-case lighting on the closest of the critical views evaluated. No night light sources presently occur within the site for the playing fields, and those from adjacent areas are unobtrusive. The field lighting would introduce ambient lighting that, in the absolute darkness of the existing site, would appear noticeable but subordinate to the street lighting in the foreground. With the introduction of screening, this impact would be greatly reduced. The two PV systems could reflect no sunlight upon ground-based observer positions, and there would be no adverse impact due to daytime light and glare. There would be no shadow-sensitive land uses to the north, northwest, or northeast of the playing fields. With the proposed screening measures, development of the Athletic Fields Complex would be consistent with Policies of the Sylmar Community Plan.

Cumulative Impacts

Past development of the SIBL ballfields, LAMC East Campus buildings, Mountain Glen Terrace residences, and other developments along the Pacoima Wash have affected the visual character of the area. The proposed LACCD parcel development would have similar effects as those of the proposed project. No other past, present, and probable future related projects have been identified that would cause cumulative aesthetic impacts in conjunction with the Athletic Fields Complex.
3.19.2.3 **Development of LACCD Property Only**

Although the development of the LACCD Property Only alternative would initially result in degradation of existing visual character, lighting and effects on Community Plan policy, the installation of substantial screen landscaping along the easterly side of the Athletic Fields Complex would, over time, buffer the sight of the playing fields and facilities. The area would eventually have an appearance of open natural space.

3.19.2.4 **No Action**

The No Action alternative would not affect aesthetics and would result in impacts less than those of the Proposed Project alternative as the current ACOE parcel is open, undisturbed land.
3.20 Scientific and Educational Value

3.20.1 Affected Environment

As discussed in Section 3.1.1 Vegetation and Habitat, Section 3.2.1 Wildlife, and Section 3.5.1 Endangered and Threatened Species, nine special-status plant species and eight special-status wildlife species are reported to occur within the San Fernando USGS quadrangle surrounding the study area. Four of the special-status plant species are protected by the federal and state Endangered Species Act and of the special-status plant species were determined to have a *Moderate* potential for occurrence designation within the study area. Five of the special-status wildlife species are protected by the federal and state Endangered Species Act and of the eight-special-status wildlife species, three were determined to have either a *Moderate or High* potential for occurrence designation within the study area.

Portions of the study area where the proposed athletic fields will be built extend into the Pacoima Wash. This wash serves as an open and undeveloped space which is essential for the regional long-term viability of plants and wildlife. Having the function to serve as a local wildlife movement corridor within the mostly urbanized Los Angeles County, the Pacoima Wash enhances the scientific and educational value of open space and undisturbed habitats within the region.

The area in the vicinity of LAMC has limited access to athletic fields. As a consequence, current outdoor instruction in health, fitness, and physical education is limited. Use of fields at El Cariso Park and other fields in the area is restricted due to high demand, and the inability of LAMC to ensure access to these facilities by its students.

3.20.2 Environmental Consequences

3.20.2.1 Methodology

The methodology for determining the affected environment and possible resources that could provide scientific and educational value is the same as those described in the aforementioned sections.

3.20.2.2 Proposed Action

Short-Term Impacts

Given the potential occurrence of endangered and threatened species as well as special-status plant and wildlife species, construction of the Athletic Fields could adversely affect the habitat upon which scientific and educational values could be derived.

To avoid effects on endangered, threatened, or special-status species, and in compliance with the California and federal Endangered Species Acts, LAMC plans to obtain an Incidental Take Permit from the CDFG and USFWS. Those agencies can only grant an incidental take permit if the project would not jeopardize the continued existence of the aforementioned species. LAMC will implement measures as directed by those agencies, such as avoiding disturbance of the site during nesting periods. By following these steps, adverse effects to listed species, which are of scientific value, would be avoided.
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.20 Scientific and Educational Value

Long-Term Impacts

The Proposed Action alternative could potentially affect wildlife and vegetation in the project area as a result of intermittent noise, light, and vibration associated with field lighting and amplified sound systems during events without the implementation of specific programs to avoid, minimize, and compensate for impacts to the aforementioned resources. However, this alternative could potentially benefit the scientific value of the area by enhancing aquatic resources, as part of the process of complying with Nationwide Permit 27. If approved by LAMC and the ACOE, this alternative would improve the college students and community’s educational opportunities to appreciate the value of the habitat adjacent to the Pacoima Wash. Vegetation suitable to the project area between the proposed access road and the top of the bank would be added along with signs indicating the types of habitat that is provided. Promoting public awareness of this habitat would serve as an important educational and scientific resource.

The project itself would promote health, fitness, and physical education. Its fields would serve as an opportunity to implement topics of scientific and educational value that students are expected to be taught at the adjacent Health, Fitness, and Athletic Complex. LAMC’s continuing enrollment growth and expansion of educational program offerings command the need for outdoor athletic facilities and open spaces for instruction, as well as athletic competition. The Proposed Action would help fulfill this need.

Impact Summary

Impacts on scientific and educational value would not be significant because LAMC would implement measures as directed by the CDFG and USFWS, such as avoiding disturbance of the site during nesting periods. By following these steps, adverse effects to listed species, which are of scientific value, would be avoided.

Long-term impacts would not be significant because the project could benefit the scientific value of the area by enhancing aquatic resources, as part of the process of complying with Nationwide Permit 27. The project would improve the college students and community’s educational opportunities to appreciate the value of the habitat adjacent to the Pacoima Wash. Promoting public awareness of this habitat would serve as an important educational and scientific resource.

Cumulative Impacts

Past projects that have added to the scientific and educational value of the area include the LAMC 2007 Facilities Master Plan. Of the projects identified for the cumulative discussion (Table 7-3), no projects were listed that would have a negative cumulative effect on resources useful for scientific and educational value. Future development of the LACCD parcel and the proposed project in addition to the Health, P.E. and Fitness Center would provide health sciences educational value. Furthermore, LAMC plans to place vegetation signage along the LACCD parcel which would be useful for biological sciences education.
3.20.2.3 Development of LACCD Property Only

Because this alternative would not include ACOE Property, vegetation would not be planted along the proposed access road nor would signs indicating the types of habitat along that area be included. Therefore, the scientific and educational values derived from this alternative would be limited to the area along the LACCD property.

3.20.2.4 No Action

Under the No Action Alternative, there would be no physical alternations that would cause disturbance to the riparian and no associated habitat. There would be no additional impacts as those stated for the Proposed Action alternative. However, no scientific or educational values would be derived from the No Action alternative. Students at the adjacent Health, Fitness, and Athletic Complex would be less able to put into practice the scientific and educational topics learned, since available fields for this use would continue to be limited.
3.21 Energy Needs and Efficiency

This analysis presents the affected environment in the project area, the methodology used, and the anticipated environmental consequences that would result from implementation of the Proposed Action, development of the LACCD Property only, and No Action.

3.21.1 Affected Environment

Most of the community of Sylmar was developed during the years immediately following World War II, which predates, and therefore would not be in compliance with, Title 24. Title 24, Part 6: California Energy Code, states that all new construction in California, residential and nonresidential buildings, must meet Title 24 energy standards (CEC, 2005). Sylmar subsequently had another wave of development and growth in the 1980s that increased the community’s number of dwelling units by 33% (City of Los Angeles, 1997). This development phase and subsequent ones are in compliance with Title 24. The existing LAMC campus is in compliance with Title 24.

The Athletic Fields development would be subject to the District’s development policy which includes the LEED rating system and accompanying Reference Guide to determine what constitutes energy efficiency and sustainability by national standards (LACCD, 2009). The LACCD’s policy is to finance, plan, design, construct, manage, renovate, maintain, and decommission its facilities and buildings to be sustainable. This applies to new construction and major remodels in which the total project square footage meets the criteria given.

The LACCD requires the LEED rating system and accompanying Reference Guide to be used as a design and measurement tool to determine what constitutes sustainable building by national standards. LACCD’s policy requires all facilities and buildings over 7,500 gross square feet of occupied space to achieve the highest possible level of LEED certification.

In addition, LACCD requires all new construction to exceed the current California Title 24 Part 6 energy requirements by 20%. For major renovation the buildings must exceed the current California Title 24 chapter 6 energy requirements by 10%.

The effect of these policies is that for all new LEED buildings, 50% of the total building energy consumption must be supplied from renewable energy, with a minimum of 20% from on site generation. Renewable energy includes photovoltaic systems, wind turbines power, and geothermal power. Other methods that are not renewable, but are considered “Green Sources” of power (less polluting than fossil fuel power plants), are micro-turbines, fuel cells, co-generation systems, and thermal storage systems ground source heat pumps. To supplement the renewable energy requirement, green power may be purchased in the form of green certified renewable energy credits.

LACCD Sustainable Design Standards use the most current LEED® for New Construction program, LEED® NC v2.2, as a benchmark. A new LEED® NC 2009 version will be published in the upcoming months, but as it is not currently available, and all Measure J projects have been registered until LEED® NC v2.2, LEED® 2009 has not been included in this standard. The criteria for each are based on the following categories in the LEED NC v2.2 Reference Guide:

3.0 Affected Environment, Project Setting, and Environmental Impacts

3.21 Energy Needs and Efficiency

- Sustainable Sites (SS)
- Water Efficiency (WE)
- Energy & Atmosphere (EA)
- Materials & Resources (MR)
- Indoor Environmental Quality (EQ)
- Innovation in Design (ID)

In the LEED® NC v2.2 rating system, projects must earn a total of 26 -32 points in the above six categories to achieve LEED certification. Additional certification levels include the following:

- Platinum: 52-69 points
- Gold: 39-51 points
- Silver: 33-38 points
- Certified: 26-32 points

The community of Sylmar is subject to the phenomena of the “urban heat island effect,” which is largely caused by the concentration of buildings and paved surfaces in urban areas. The “urban heat island effect” is the increase in temperatures in urban areas that result in a greater number of days when air quality is unhealthy or worse. The City of Los Angeles’s approach to addressing the “urban heat island effect” has been to focus on better management of the urban forest to offset its effects, such as using trees to reduce the demand for air conditioning and cooling in buildings.

Electricity for the community of Sylmar is provided by the LADWP. LADWP has proposed a Renewable Portfolio Standard (RPS) designed to increase the amount of energy it generates from renewable power sources to 20% of its retail electric sales by 2010 (LADWP, 2009a). The long term goal, as identified in the Mayor’s Climate Action Plan, is to achieve 35% renewable energy generation by 2020. The policy will provide a long-term framework to achieve the 35% goal without compromising power reliability or the financial stability of the Department and its customers.

Eligible renewable energy resources currently comprise 14% of LADWP power (Table 3.21-1). Customers who participate in the LADWP Green Power for a Green LA Program can elect to purchase 100% renewable energy for a small premium (currently three cents per kilowatt hour).
3.0 Affected Environment, Project Setting, and Environmental Impacts

3.21 Energy Needs and Efficiency

Table 3.21-1 Current Energy Mix

<table>
<thead>
<tr>
<th>Energy Resources</th>
<th>LADWP Power (projected)</th>
<th>LADWP Green Power (projected)</th>
<th>2007 CA Power Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Renewable</td>
<td>14%</td>
<td>100%</td>
<td>10%</td>
</tr>
<tr>
<td>– Biomass & waste</td>
<td>1%</td>
<td>-</td>
<td><1%</td>
</tr>
<tr>
<td>– Geothermal</td>
<td>2%</td>
<td>-</td>
<td>2%</td>
</tr>
<tr>
<td>– Small hydroelectric</td>
<td>5%</td>
<td>25%</td>
<td>6%</td>
</tr>
<tr>
<td>– Solar</td>
<td><1%</td>
<td>-</td>
<td><1%</td>
</tr>
<tr>
<td>– Wind</td>
<td>6%</td>
<td>75%</td>
<td>2%</td>
</tr>
<tr>
<td>Coal</td>
<td>44%</td>
<td>-</td>
<td>32%</td>
</tr>
<tr>
<td>Large Hydroelectric</td>
<td>7%</td>
<td>-</td>
<td>24%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>26%</td>
<td>-</td>
<td>31%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>9%</td>
<td>-</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td><1%</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: 2009 LADWP Power Content Label (LADWP, 2009b)

3.21.2 Environmental Consequences

3.21.2.1 Methodology

Energy conservation impacts were analyzed by estimating project energy requirements by amount and fuel type. These data were used to evaluate the project’s effects on energy resources and the degree to which the project would comply with existing energy standards.

3.21.2.2 Proposed Action

Short-Term Impacts

Construction of the proposed project would not require unnecessary consumption of energy. Grading of sites would be minimized to reduce energy use, costs, and land disruption due to construction. Construction of the project would be in compliance with Los Angeles Community College District Sustainable Building Policy, which requires the Community College to construct, renovate, and decommission its facilities and buildings in a sustainable fashion.

Long-Term Impacts

Operations of the project would be in compliance with Los Angeles Community College District Policy which requires the Community Colleges to manage and maintain its facilities and buildings in a sustainable fashion. Specifically, all new construction would exceed Title 24 standards by 20%, and the proposed project would achieve LEED certification. The project would incorporate on-site renewable energy generation by installing solar panels over the parking lot to provide shading. The project design would incorporate energy conservation and demand side management features.

Impact Summary

Impacts on energy needs and efficiency would not be significant because the project would not require unnecessary consumption of energy and would not preempt future energy development and would promote energy conservation.
Cumulative Impacts

LAMC currently uses about 5,214 MWhr per year. The demand from the proposed project has not been defined, but is expected to only be a fraction of this use, since very little energy use is required to use the proposed fields.

With the proposed project, cumulative impacts of past, present, and probable future related projects in the area would result in a slight increase in local energy consumption. Increase in on-peak and base load electricity demand would be partially offset by on-site solar power energy generation. Since the project would not generate enough renewable energy to satisfy 100% of its energy demand, the project would result in an incremental increase in the depletion of non-renewable energy resources including coal and natural gas. Since the Athletic Fields would only use night lighting occasionally, and other electric use would be small, this increase would be minimal.

3.21.2.3 Development of LACCD Property Only

This alternative would increase overall energy use and would reduce energy conservation and sustainability practices compared to the proposed project. Energy used in operating other facilities for athletic purposes, such as the existing County Park facilities, would be greater than that of the proposed project because those facilities are not as energy efficient as the proposed ACOE facilities and because they do not utilize on-site renewable energy generation. Energy used by athletes and staff to travel to other facilities would also be greater than the energy used to access facilities located adjacent to LAMC facilities.

3.21.2.4 No Action

Under this alternative, there would be no impacts associated with energy needs at the site because the proposed project is currently undeveloped land.

Energy use under this alternative would be greater than that of the proposed project because other facilities are not as energy efficient, they do not utilize on-site renewable energy generation, and athletes and staff would travel greater distances.
3.22 Environmental Justice

Environmental Justice and Title VI of the Civil Rights Act of 1964 and related statutes ensure that individuals are not excluded from participation in, denied the benefit of, or subjected to discrimination under any program or activity receiving federal financial assistance on the basis of race, color, national origin, age, sex, or disability. Executive Order 12898 regarding environmental justice directs that programs, policies, and activities not have a disproportionately high and adverse human health and environmental effect on minority and low-income populations. According to these regulations:

Minority populations are persons of Hispanic or Latino origin of any race; Blacks; American Indian/Alaska Natives; and Asians or Pacific Islanders. Low-income populations are persons living below the poverty level. The U.S. Census Bureau uses a set of income thresholds that vary by family size and composition to determine who would be considered living below the poverty level.

To evaluate whether there are concentrations of the populations mentioned above within the study area, the proportions of minority and poverty populations in the census tracts that are located within 1 mile of LAMC were compared with the proportions in the larger population (e.g., Los Angeles County). A concentration of low-income population occurs if the percentage of the population fitting the description exceeds the Los Angeles County ratio. Data for municipalities in the vicinity of project area also are included to provide additional context.

To evaluate the presence of minority populations, data identifying racial and Hispanic minorities were aggregated for areas within one-mile of the project area including Los Angeles County and the City of Los Angeles. Within the census data, ethnicity is considered separately from race.

3.22.1 Affected Environment

Environmental justice considerations in the study area include a one mile buffer around the project area. Census tracts, geographic regions within a community generally corresponding with population density, within this study area are shown on Figure 3.22-1 Census Tract Boundaries. Environmental justice conditions include analyses of traditionally underserved populations including minorities, those living below the poverty level, the elderly, and the disabled. The affected environment examined for environmental justice issues are shown in Figure 3.22-1.

Demographic data obtained from the U.S. Bureau of the Census of 2000 were used to compare the demographic profile of the study area to that of Los Angeles County and the City of Los Angeles. As shown in Figure 3.22-1, seven census tracts approximate the study area’s boundary and population.

The data in Table 3.22-1 Jurisdictional Census Tract Characterization indicate that the majority of residents in the project area are Hispanic. According to the U.S. Census Bureau of 2000, the term “Hispanic” is used to reference ethnicity and not race. Therefore, a person can be counted as being both white and Hispanic, black and Hispanic, and so forth.
3.0 Affected Environment, Project Setting, and Environmental Impacts
3.22 Environmental Justice

Los Angeles County and the City of Los Angeles generally have greater proportions of minority populations than is represented in the overall state population. In 2000, Hispanics/Latinos comprised almost half of the total population in both the county and the City of Los Angeles. These figures do not include undocumented residents and workers so it is likely that the actual percentage of Hispanics/Latinos was higher at that time. Out of the seven census tracts in the study area, six have a higher percentage of Hispanic/Latinos than both Los Angeles County and the City of Los Angeles. Exceeding more than 50 percent of the population, the Hispanic/Latino population qualifies as a protected environmental justice population.

The percentage of individuals below the poverty level within city and county boundaries also is shown in Table 3.22-1. Out of the seven census tracts, only one has a higher percentage of both individuals (16 years of age and over) and total individuals living below the poverty level. Located west of the project area, census tract 1064.04 has a higher percentage of Hispanics/Latinos and individuals living below the poverty level, as well as a lower median household income than Los Angeles County and the City of Los Angeles overall.

Within the project area, there are only two census tracts that have a higher percentage of individuals with disabilities than the city’s percentage of 21.0. Census tracts 1060.10 and 1064.04 have a greater percentage of 0.3 and 2.6, respectively.
Figure 3.22-1 Census Tract Boundaries
3.22 Environmental Justice

Table 3.22-1 Jurisdictional Census Tract Characterization

<table>
<thead>
<tr>
<th>Demographic Characteristic</th>
<th>Census Tract 1060.10</th>
<th>Census Tract 1060.20</th>
<th>Census Tract 1061.12</th>
<th>Census Tract 1061.13</th>
<th>Census Tract 1061.14</th>
<th>Census Tract 1064.04</th>
<th>Census Tract 9302</th>
<th>City of Los Angeles</th>
<th>Los Angeles County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>4,139</td>
<td>5,817</td>
<td>4,753</td>
<td>3,084</td>
<td>5,136</td>
<td>4,833</td>
<td>750</td>
<td>3,694,820</td>
<td>9,519,338</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>48.4%</td>
<td>50.2%</td>
<td>50.1%</td>
<td>48.5%</td>
<td>49.7%</td>
<td>47.1%</td>
<td>47.5%</td>
<td>49.8%</td>
<td>49.4%</td>
</tr>
<tr>
<td>Female</td>
<td>51.6%</td>
<td>49.8%</td>
<td>49.9%</td>
<td>51.5%</td>
<td>50.3%</td>
<td>52.9%</td>
<td>52.5%</td>
<td>50.2%</td>
<td>50.6%</td>
</tr>
<tr>
<td>Race and ethnicity:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White alone</td>
<td>27.6%</td>
<td>22.8%</td>
<td>25.4%</td>
<td>26.5%</td>
<td>13.6%</td>
<td>14.2%</td>
<td>62.7%</td>
<td>29.7%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>8.3%</td>
<td>3.2%</td>
<td>3.5%</td>
<td>3.6%</td>
<td>5.7%</td>
<td>8.6%</td>
<td>2.5%</td>
<td>10.9%</td>
<td>9.5%</td>
</tr>
<tr>
<td>American Indian/Alaska</td>
<td>0.5%</td>
<td>0.7%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.6%</td>
<td>0.3%</td>
<td>1.1%</td>
<td>0.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Asian alone</td>
<td>3.8%</td>
<td>3.5%</td>
<td>1.6%</td>
<td>3.3%</td>
<td>2.3%</td>
<td>3.4%</td>
<td>1.1%</td>
<td>9.9%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Some other race alone<sup>1</sup></td>
<td>0.2%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Two or more races alone</td>
<td>1.6%</td>
<td>1.8%</td>
<td>1.2%</td>
<td>1.3%</td>
<td>0.7%</td>
<td>1.3%</td>
<td>1.7%</td>
<td>2.4%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>58.1%</td>
<td>67.4%</td>
<td>67.9%</td>
<td>64.9%</td>
<td>77.1%</td>
<td>71.8%</td>
<td>30.8%</td>
<td>46.5%</td>
<td>44.6%</td>
</tr>
<tr>
<td>Aged 65 years and over</td>
<td>8.1%</td>
<td>6.8%</td>
<td>8.3%</td>
<td>6.9%</td>
<td>8.4%</td>
<td>5.2%</td>
<td>12.5%</td>
<td>10.3%</td>
<td>10.3%</td>
</tr>
<tr>
<td>Disabled individuals<sup>2</sup></td>
<td>21.3%</td>
<td>19.7%</td>
<td>21.4%</td>
<td>19.7%</td>
<td>19.0%</td>
<td>23.6%</td>
<td>13.1%</td>
<td>21.0%</td>
<td>43.7%</td>
</tr>
<tr>
<td>Individuals below the poverty level<sup>3</sup></td>
<td>5.7%</td>
<td>8.7%</td>
<td>5.1%</td>
<td>5.6%</td>
<td>10.9%</td>
<td>15.2%</td>
<td>9.9%</td>
<td>16.0%</td>
<td>12.7%</td>
</tr>
<tr>
<td>Total of individuals below the poverty level<sup>4</sup></td>
<td>8.6%</td>
<td>12.1%</td>
<td>6.6%</td>
<td>7.9%</td>
<td>15.1%</td>
<td>25.9%</td>
<td>19.8%</td>
<td>22.1%</td>
<td>17.9%</td>
</tr>
<tr>
<td>Median household income</td>
<td>$50,714</td>
<td>$55,282</td>
<td>$56,030</td>
<td>$57,466</td>
<td>$38,176</td>
<td>$30,452</td>
<td>$39,728</td>
<td>$36,687</td>
<td>$42,189</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau 2000

Note(s):

1. Includes Native Hawaiian and other Pacific Islander.
2. Among civilian non-institutionalized persons 16 years of age and over.
3. Among civilian non-institutionalized persons 16 years of age and over.
4. Includes grand total of individuals with an income in 1999 below poverty level. SF3 P87 was used to determine figures.
3.22.2 Environmental Consequences

3.22.2.1 Methodology

Demographic data obtained from the 2000 U.S. Census Bureau were used to compare the demographic profiles of the counties and municipalities to the census tracts located at or near the project area. Census data for 1990 and 2000 are the most uniform detailed data series at the regional and local levels. A key indicator of the potential for environmental justice concerns is whether an area’s proportion of minority and/or low-income population exceeds the proportion of such populations in a larger area of reference (such as the county population).

3.22.2.2 Proposed Action

Short-Term Impacts

Temporary access issues due to delays and detours caused by construction would occur for nearby residents and students driving near the project area. Access to the ACOE Property also would be temporarily restricted during construction. However, nearby residents and business owners/occupants would continue to have access to their homes and businesses. Temporary closures related to construction could negatively affect pedestrian access of the environmental justice population living in this area. Detours potentially increasing traffic through this area could affect this population as well.

Long-Term Impacts

Currently, the areas where the proposed athletic fields are located at LAMC are used for passive recreational use by local residents. Once the Athletic Fields are built, access would be restricted to collegiate use only. Local parks and recreational facilities previously used by the LAMC students for baseball and softball practices and games would be freed up for use by the community, which would be a beneficial effect. Access to the surrounding areas outside of the project area would be maintained.

Impact Summary

Impacts on environmental justice would not be significant since the actual project site consists of vacant Pacoima wash land with no existing development along its immediate border. As a result, no impacts to neighborhood cohesion would occur.

Cumulative Impacts

Of the projects identified within a 4.0 mile radius for the cumulative impact analysis, no projects have been identified that would have a cumulative effect on nearby environmental justice populations. Planned housing developments within the Sylmar community would generally increase the number of residents in the area as well as demand for use of recreational facilities. This increase could potentially add to future student enrollment at LAMC, which would be accommodated in part by the Proposed Action.
The Proposed Action would result in the provision of current recreational facilities being made available for others, since current use of nearby recreational facilities by LAMC students for baseball and softball practices and games would be reduced. Although the use of the ACOE Property would be restricted to collegiate use only, the local community would still have access to the surrounding areas along and to the east and west of the Pacoima Wash, to surrounding community and regional parks, and to the Angeles National Forest. Other projects in the area would not reduce this access.

3.22.2.3 Development of LACCD Property Only

If the proposed ACOE Property site remains undeveloped, short-term parking would not be available for users of the LACCD property. Reduction of parking could adversely affect the ability of the college to attract students to the Health and Fitness programs, and would reduce the functionality of the LACCD Athletic Field. This could hinder the college’s ability to attract potential students from nearby areas with high minority populations. Off-site recreational facilities would continue to be used for baseball and softball games by LAMC. Local residents would not only be restricted from using the LACCD property but they would also experience limited availability of other community facilities for their own personal recreational use since demand for this use by LAMC would continue. With projected population increases given planned housing developments, this alternative could potentially add to traffic congestion for existing and future residents since some LAMC athletic events would continue to be held offsite.

3.22.2.4 No Action

Under the No Action Alternative, there would be no construction-related disruptions to environmental justice populations, including temporary access issues. Local residents could continue using the ACOE land for passive recreational use; however, activities related to nearby recreational facilities would be restricted given potential scheduling conflicts with LAMC practices and games.
4.0 ALTERNATIVES REVIEW

Through the screening process, a reasonable range of alternatives was selected for further analysis. Chapter 2, Alternatives to the Proposed Project, identified two reasonable alternatives to be carried forward for analysis. The No Action Alternative was selected as required by NEPA. The Development of the LACCD Property Only Alternative was also selected as an alternative to be analyzed since it would partially meet some of the objectives of the Proposed Action. Both alternatives are described in Section 2.2. For each alternative, the potential beneficial and adverse impacts to the affected environment are assessed below. These impacts are compared to those associated with the Proposed Action at the conclusion of this section.

4.1 No Action Alternative (No Lease of the ACOE Property and No Development of Either ACOE or LACCD Properties)

Under this alternative, LAMC would not lease 8.2 acres of land from the ACOE and no development of the Athletic Fields would occur on either the ACOE or LACCD properties.

4.1.1 Vegetation and Habitat

This alternative would not result in direct nor indirect adverse effects to vegetation or habitat. Since the No Action Alternative would not adversely impact trees, shrubs, or plants in the vicinity of the study area, no beneficial or adverse effects are anticipated.

4.1.2 Wildlife

This alternative would not result in adverse effects to wildlife. Since no physical alteration (i.e., grading or excavation) would occur, the No Action Alternative would not adversely impact wildlife in the vicinity of the study area and no beneficial or adverse effects are anticipated.

4.1.3 Natural Drainage

Since the ACOE Property is within a currently mapped flood inundation area, it would continue to incur periodic flooding, resulting in continuing erosion, which could eventually impact natural drainage courses.

4.1.4 Riparian and Wetland Resources

This alternative would not result in impacts to riparian and wetlands resources on the ACOE site. Since the No Action Alternative would not adversely affect riparian and wetland resources in the area, no beneficial or adverse environmental effects are anticipated.

4.1.5 Endangered and Threatened Species

This alternative would not result in adverse effects to endangered or threatened species. Since no physical alteration (i.e., grading or excavation) would occur, no disturbance to trees, shrubs, plants, raptors and birds, or animals in the vicinity of the study area would be experienced. No beneficial or adverse effects are anticipated.
4.0 Alternatives Review

4.1.6 Cultural Resources
Since there are no potentially historic structures within the proposed project site, historic effects from this alternative would be the same as for the Proposed Action. The No Action Alternative would not result in any direct or indirect effects to undiscovered onsite archaeological or paleontological resources within the project area, since no physical alteration (i.e., grading) at that site would occur under this alternative. No adverse affects to the historic structures listed in or eligible for listing in the National Register of Historic Places are anticipated. No beneficial or adverse effects would occur.

4.1.7 Water Quality and Supply
This alternative would not add to overall demand for water, wastewater, or landfill disposal capacity, and therefore would have less impacts on these resources compared to the Proposed Action. Since this existing demand can be accommodated by existing systems, no adverse effects are anticipated.

4.1.8 Flood Control and Hydrology
If the proposed ACOE Property is not developed for Athletic Fields, there would be no net change to the current water quality and hydrologic impacts from that property. The ACOE site is currently designed and managed as a flood control debris basin and the impacts from this use would not change. The site would continue to erode. Minor effects are anticipated.

4.1.9 Recreation
Although this alternative would have no direct physical effect on the environment, it would also not improve the site for recreational purposes as designated in the Lopez Dam Basin Master Plan. Further, No Action would exacerbate the College’s increased need for recreational facilities and opportunities; would result in a deficiency of recreational facilities available for current athletes of the campus; and would require continued use of County Parks for athletic programs. Continued use of County facilities would continue to require ongoing maintenance by the College, even as availability diminishes due to increasing demand, thereby increasing costs without corresponding benefits to the College or community.

The ACOE Property would continue to be used for passive recreation by community members. Since this property is a small part (approximately 8.2 acres) of the large passive recreational space contained within the Pacoima wash area, the recreational benefit of this alternative would be minor compared to the loss in positive recreational benefits that would occur from development of the project.

4.1.10 Air Quality
Under this alternative, there would be no adverse effects from dust or other emissions during construction to sensitive receptors on the east side of campus associated with the development of the Athletic Fields. Without the development of the ACOE Property, GHG emissions from construction would also be reduced. Under the No Action Alternative, the air quality in the project vicinity would remain similar to existing conditions. There would be some adverse effects to air quality for this alternative related to long travel times for students traveling to remote athletic fields. Minor effects are anticipated.
4.1.11 Soils and Geology
This alternative would result in continued potential adverse effects to the geology and soils since effects from earthquakes, seiches, and flooding would continue to have the potential of occurring on the ACOE site.

4.1.12 Erosion and Sedimentation
This alternative would result in continued direct and indirect effects with respect to the erosion of the ACOE Property. Sedimentation loads from site runoff would continue to enter Pacoima Wash, which would also be an adverse effect.

4.1.13 Mineral Resources
This alternative would not result in excavation of, prevention of access to, or other adverse effects to mineral resources. No effects are anticipated.

4.1.14 Land Use and Master Plan Compatibility
Under this alternative, minor adverse effects to land use would occur because neither the ACOE nor the LACCD properties would be used to the full designated potential as recreational areas.

4.1.15 Economics
Under this alternative, LAMC would continue to use/rent County and other off-site men’s baseball, women’s softball, and men’s/women’s soccer facilities. The college would continue to pay for upgrades to these facilities in order to meet intercollegiate standards. These adverse economic effects are anticipated to increase in importance and severity over time as demand increases and supply becomes increasingly limited.

4.1.16 Safety, Health, Hazardous Wastes, and Solid Wastes
This alternative would not result in an increase demand for public services such as fire and police because the ACOE Property is currently a vacant undeveloped land. Current existing and planned services would be sufficient to provide adequate services. No adverse effects are anticipated.

4.1.17 Noise
The noise exposure levels at existing noise sensitive land uses would remain at their current levels. There would be no new effects from construction and operation. No adverse effects are anticipated.

4.1.18 Traffic
This alternative would result in continued regional adverse effects on transportation and traffic compared to the Proposed Action, since travel to remote locations would continue. This alternative would also not provide temporary parking for Health, Fitness and Athletic Building. Local traffic would be reduced compared to the Proposed Project.

4.1.19 Aesthetics
No direct adverse aesthetic effects would occur because the ACOE Property would not be developed.
4.0 Alternatives Review

4.1.20 Scientific and Educational Value
Under this alternative, there would be no increase in scientific or educational values that would be derived from the site. The beneficial scientific and educational effects of the Proposed Action would not be realized.

4.1.21 Energy Needs and Efficiency
Under this alternative, there would be no adverse effects associated with energy needs and efficiency because no development would occur on the ACOE Property. Adverse effects involving use of inefficiently lit fields and use of energy to travel to remote locations would continue.

4.1.22 Environmental Justice
Under this alternative, there would be no construction-related disruptions to the population. Local residents could continue using the ACOE land for passive recreational use; however, activities related to nearby recreational facilities would be restricted given potential scheduling conflicts with LAMC practices and games.

4.2 Development of the LACCD Property Only
Under this alternative, LAMC would develop the proposed Athletic Fields on the 6.4 acres of the LACCD property only. No development would occur on the ACOE Property except for the reconstruction or relocation of the access road and addition of revetments to protect the road.

4.2.1 Vegetation and Habitat
This alternative would result in potential adverse effects to locally protected vegetation and habitat on the LACCD Athletic Fields site. No adverse effects are anticipated with mitigation.

4.2.2 Wildlife
This alternative would result in potential adverse effects to locally protected wildlife on the LACCD Athletic Fields site. Noise, dust, and vibration resulting from short-term and long-term activities could temporarily deter individual animals from utilizing the project area. Some displacement may occur with impediments to animal movement. Adverse environmental effects would be minimized by mitigation.

4.2.3 Natural Drainage
If the proposed ACOE Property is not developed for Athletic Fields, there would be no net change to the current water quality and hydrologic impacts from that property. Since the revetment would protect both the LACCD Athletic Fields site and the ACOE Property, impacts relating to natural drainage would be reduced. The ACOE site is currently designed and managed as a flood control debris basin and the impacts from this use would not change. Adverse environmental effects would be minimized by mitigation.

4.2.4 Riparian and Wetland Resources
This alternative would result in potential adverse impacts to riparian and wetland resources associated with construction of revetments along the Pacoima Wash. Land disturbance, noise, dust, and vibration resulting from short-term and long-term activities could impact identified riparian and
wetland resources. These impacts would be minimized with the same mitigation suggested for the Proposed Action. Adverse environmental effects would be minimized by mitigation.

4.2.5 Endangered and Threatened Species

This alternative would result in potential adverse effects to endangered and threatened species near the LACCD property. Noise, dust, and vibration resulting from short-term and long-term activities could temporarily deter these species from utilizing the project area. Some displacement may occur with impediments to animal movement. These effects would be minimized with the same mitigation suggested for the Proposed Action. Adverse environmental effects would be minimized by mitigation.

4.2.6 Cultural Resources

There is a potential for undiscovered archaeological and paleontological resources to be uncovered at the LACCD Athletic Fields site. No adverse affects to the historic structures listed in or eligible for listing in the National Register of Historic Places are anticipated. No change to the ACOE Property would occur. Adverse environmental effects would be minimized by mitigation.

4.2.7 Water Quality and Supply

With this alternative, since the revetment would protect both the LACCD Athletic Fields site and the ACOE Property, effects relating to water quality from erosion would be reduced. This alternative would result in less adverse effect compared to the proposed project alternative, since development would occur on the LACCD property only. Adverse environmental effects would be minimized by mitigation.

4.2.8 Flood Control and Hydrology

Bank stabilization would reduce water quality and hydrologic impacts to the ACOE and LACCD properties. Development of Athletic Fields on the LACCD property would result in less adverse effects when compared with the Proposed Action. Adverse environmental effects would be minimized by mitigation.

4.2.9 Recreation

Although this alternative would have no direct physical effect on the ACOE Property, it would have indirect effects on recreation. If the proposed ACOE Property site remained undeveloped as disturbed natural open space and other aspects of the 2009 LAMC Facilities Master Plan were implemented, no temporary parking for the Health, Fitness and Athletics Building would be provided. Reduction of parking would adversely affect the ability of the college to attract students to the Health and Fitness programs, and would reduce the functionality of the LACCD Athletic Field. Use and lease of County and other off-site baseball athletic fields would continue, which would reduce the ability of the College to schedule games, reducing the involvement of students in intercollegiate and team sports, and reducing the attractiveness of the athletic programs. The continued passive recreational use of the ACOE Property would maintain existing uses of the site by walkers and other visitors to the area. The net effects of this alternative would be to reduce the overall availability of recreational facilities and opportunities for the College compared to the Proposed Project.
4.2.10 Air Quality

Under this alternative, there would be direct adverse air quality impacts associated with construction at the LACCD property. Long-term effects on receptors in the area from traffic-related emissions of criteria pollutants and GHGs due to use of the LACCD property and travel to remote fields would continue. Adverse environmental effects would be minimized by mitigation.

4.2.11 Soils and Geology

The alternative would have similar impacts involving geology and soils as the Proposed Project. Liquefaction, landslides, and seiches from seismic events, shallow groundwater and potentially liquefiable loose sands would continue to be present at the ACOE site; however, revetments would be put in place to minimize bank erosion. Since there would be a lower probability of people being located on the site during seismic events, effects would be similar to but somewhat less than those of the Proposed Project alternative.

4.2.12 Erosion and Sedimentation

The alternative would reduce potential adverse effects involving erosion and sedimentation of activity on the LACCD property compared to existing conditions and the No Action Alternative. The Pacoima Wash bank protection measures would reduce erosion and sedimentation at the LACCD property, and would have slightly less beneficial effects compared to the Proposed Action at the ACOE Property.

4.2.13 Mineral Resources

The development of LACCD property would result in direct adverse effects to mineral resources by preventing use of these resources at that location. However, the loss of important mineral resources available on the LACCD site would be minor compared to the aggregate mineral resources present in the region. Impacts would be less than those of the Proposed Action.

4.2.14 Land Use and Master Plan Compatibility

Under this alternative, some land use effects would occur to ACOE Property because improvements of the road and bank stabilization of the ACOE Property would alter its current undeveloped passive use. The current land use designation of the ACOE Property as a recreational resource area is compatible with the intended recreational land use on the nearby LACCD property. Thus, use of the LACCD property for Athletic Fields would not require a change of ACOE land use designation. The ACOE Property would not be utilized to its full potential as a recreational resource area.

4.2.15 Economics

Under this alternative, LAMC would save development and lease costs by not leasing ACOE land. The development of the Athletic Fields would continue as planned on the LACCD property, resulting in reduced development costs to LAMC, however costs of maintaining existing facilities not controlled by LAMC would continue. Reduced economical benefits to LAMC students and community compared to the Proposed Action include the reduced opportunity to participate in recreational activities available at other local facilities due to high demand, continued costs of traveling to and paying for use of remote sites, and reduced opportunities and incentives for LAMC students to become involved in LAMC’s Health and Fitness programs.
4.0 Alternatives Review

4.2.16 Safety, Health, Hazardous Wastes, and Solid Wastes

The development of LACCD property would adhere to standard construction and operational practices. As a result, existing and planned services would be sufficient to provide adequate services during construction and operation. No change to the ACOE Property would occur. No adverse effects are anticipated.

4.2.17 Noise

There would be short-term and long-term impacts from noise from development and use of the LACCD property for Athletic Fields. Indirect effects from noise to adjacent sensitive receptors would occur. Potential adverse effects would be minimized with proper mitigation measures.

4.2.18 Traffic

The development of the LACCD property would result in similar adverse effects to peak hour and peak day transportation and traffic as would occur from the Proposed Action. Additional indirect adverse effects compared to the Proposed Action would result as a consequence of not being able to provide parking for the Health, Fitness, and Athletic building, and from continuing to require travel to remote locations for some athletic events. Mitigation measures would reduce and minimize potentially adverse traffic effects.

4.2.19 Aesthetics

Potential adverse effects would occur at the LACCD property from degradation of existing visual character, from lighting, and from being unable to meet all policies set forth in the Sylmar Community Plan. These adverse effects can be minimized with mitigation measures included in the Proposed Action.

4.2.20 Scientific and Educational Value

Vegetation would be planted along the proposed access road and signs indicating the types of habitat along that area could be included. Therefore, scientific and educational values derived from this alternative would be similar to those of the Proposed Action.

4.2.21 Energy Needs and Efficiency

This alternative would result in potentially adverse effects to energy, conservation, and sustainability compared to the Proposed Action. Existing County Parks would not be energy efficient as the proposed ACOE facilities for the Athletic Fields site because it does not utilize on-site renewable energy generation, and travel to remote sites would continue to use excess energy.

4.2.22 Environmental Justice

If the proposed ACOE Property site remains undeveloped, short-term parking would not be available for users of the LACCD property. Reduction of parking could adversely affect the ability of the college to attract students to the Health and Fitness programs, and would reduce the functionality of the LACCD Athletic Field. This could hinder the college’s ability to attract potential students from nearby areas with high minority populations. Off-site recreational facilities would continue to be used for baseball and softball games by LAMC. Local residents would not only be restricted from using the LACCD property, but they would also see a reduction in availability of
other community facilities for their own personal recreational use. These adverse effects would not occur with the Proposed Action.

4.3 Comparison of Alternatives

Table 4-1 compares the effects of the Proposed Action with those of the alternatives evaluated in this EA. An environmental effect can be defined as major, moderate, minor, negligible, or none based on the magnitude and extent of short-term or long-term activities. Where an alternative would cause an environmental effect that would be either more adverse or less beneficial than the Proposed Action, either in extent (physical extent or extent within a species, ecosystem, or region) or intensity (magnitude and duration), a “−” is shown. Where it would cause impacts that would be less adverse or more beneficial compared to the Proposed Action, a “+” is shown.

The table shows that the No Action Alternative would have none of the beneficial effects of the Proposed Action and the Development of the LACCD Property Only Alternative would have less beneficial effects than the Proposed Action. The table also shows that the adverse effects of the Proposed Action would be similar to or greater than those of the LACCD Property Only Alternative and generally greater than those of the No Action Alternative. Most of these adverse effects of the Proposed Action would be minor, and in all cases, standards applicable to each issue area would be met.

<table>
<thead>
<tr>
<th>Issue Areas</th>
<th>Proposed Project</th>
<th>No Action Alternative</th>
<th>Development of the LACCD Property Only Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetation</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor</td>
</tr>
<tr>
<td>Wildlife</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor</td>
</tr>
<tr>
<td>Natural Drainage</td>
<td>Minor</td>
<td>Minor / -</td>
<td>Minor</td>
</tr>
<tr>
<td>Riparian and Wetland Resources</td>
<td>Moderate</td>
<td>None / +</td>
<td>Moderate / +</td>
</tr>
<tr>
<td>Endangered and Threatened Species</td>
<td>Moderate</td>
<td>None / +</td>
<td>Moderate / +</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor</td>
</tr>
<tr>
<td>Water Quality and Supply</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor / +</td>
</tr>
<tr>
<td>Flood Control and Hydrology</td>
<td>Beneficial</td>
<td>Minor / -</td>
<td>Beneficial</td>
</tr>
<tr>
<td>Recreation</td>
<td>Beneficial</td>
<td>Moderate / -</td>
<td>Beneficial / -</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Minor</td>
<td>Minor / -</td>
<td>Minor / -</td>
</tr>
<tr>
<td>Soils and Geology</td>
<td>Minor</td>
<td>Minor / -</td>
<td>Minor / +</td>
</tr>
<tr>
<td>Erosion and Sedimentation</td>
<td>Beneficial</td>
<td>Minor / -</td>
<td>Beneficial / -</td>
</tr>
<tr>
<td>Mineral Resources</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor / +</td>
</tr>
<tr>
<td>Land Use and Master Plan Compatibility</td>
<td>Minor</td>
<td>Minor / -</td>
<td>Minor / -</td>
</tr>
<tr>
<td>Economics</td>
<td>Beneficial</td>
<td>Minor / -</td>
<td>Minor / -</td>
</tr>
<tr>
<td>Safety, Health, Hazardous Wastes and Solid Wastes</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor</td>
</tr>
<tr>
<td>Noise</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor</td>
</tr>
<tr>
<td>Traffic</td>
<td>Moderate</td>
<td>Minor / +</td>
<td>Moderate</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>Minor</td>
<td>None / +</td>
<td>Minor / +</td>
</tr>
<tr>
<td>Scientific and Educational Value</td>
<td>Beneficial</td>
<td>None / -</td>
<td>Beneficial</td>
</tr>
<tr>
<td>Energy Needs and Efficiency</td>
<td>Minor</td>
<td>Minor / -</td>
<td>Minor / -</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>Beneficial</td>
<td>Minor / -</td>
<td>Beneficial</td>
</tr>
</tbody>
</table>
5.0 MITIGATION

LAMC has developed plans to minimize the environmental effects of the project described in Section 3.0 of this EA. The mitigation measures proposed by LAMC are summarized in the table below. For each environmental issue area for which mitigation measures are proposed, the table shows the identified potential effects and the corresponding measures that are proposed to reduce them.

Table 5-1 Summary of Project Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Potential Effects</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGETATION AND HABITAT</td>
<td></td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could impact locally protected</td>
<td>Prior to undertaking ground-disturbing activities within the study area - LAMC shall coordinate with the City and County to ensure consistency with all local tree, shrub and plant protection requirements.</td>
</tr>
<tr>
<td>trees, shrubs and plants.</td>
<td></td>
</tr>
<tr>
<td>WILDLIFE</td>
<td></td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could affect birds protected by</td>
<td>In order to comply with Section 10 of the MBTA, and relevant sections of the CFGC (e.g., 3503, 3503.4, 3504, 3505, etc.), any vegetation clearing within the study area should take place outside of the typical avian nesting season (i.e., February 15 to August 31); to the maximum extent practical. Prior to ground-disturbing activities, a qualified biologist shall conduct and submit a nesting bird and raptor survey report. The survey shall occur prior to initiation of project activities and any occupied passerines and/or raptor nests occurring within or adjacent to the study area shall be delineated. To the maximum extent practicable, a minimum buffer zone from occupied nests shall be maintained during physical ground-disturbing activities. Once nesting has been determined to cease, the buffer may be removed.</td>
</tr>
<tr>
<td>the Migratory Birds Treaty Act (MBTA) and species protected by the California Fish and Game Code (CFG C).</td>
<td></td>
</tr>
<tr>
<td>RIPARIAN AND WETLAND RESOURCES</td>
<td></td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could impact special aquatic</td>
<td>Prior to undertaking ground-disturbing activities - Los Angeles Mission, will complete a Preliminary Jurisdictional Determination and consult with the appropriate responsible resource agency (i.e., ACE, CDFG and/or RWQCB) to vet the limits of their jurisdiction and secure all obligatory discretionary permits/authorizations.</td>
</tr>
<tr>
<td>resource areas.</td>
<td></td>
</tr>
<tr>
<td>ENDANGERED AND THREATENED SPECIES</td>
<td></td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could impacts special status</td>
<td>Prior to initiating ground disturbing activities complete focused surveys within the native vegetation communities (e.g., coastal sage scrub, alluvial fan sage scrub and willow riparian) to assess the study area for its’ potential to support coastal California gnatchatcher, least Bell’s vireo and special status plant species. In the event that special status species are discovered within the study area, obtain an Incidental Take Permit from the CDFG and/or USFWS.</td>
</tr>
<tr>
<td>species.</td>
<td></td>
</tr>
</tbody>
</table>
5.0 Mitigation

CULTURAL RESOURCES

<table>
<thead>
<tr>
<th>Potential Effects</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction and operation of the Athletic Fields could potentially impact archaeological resources.</td>
<td>The LACCD shall require the presence of an archaeological monitor during all ground disturbing activities in order to ensure that potential significant impacts to unknown cultural resources shall be reduced to less than significant. In the event that any prehistoric or historic cultural resources (chipped or ground stone lithics, animal bone, ashy midden soil, structural remains, historic glass or ceramics, etc.) are discovered during the course of construction, all work in the vicinity shall halt, and the archaeologist will evaluate the significance of the find, and if significant, identify the proper course for mitigation. Any archaeological resources encountered shall be documented on California Department of Parks and Recreation Forms (DPR) 523 Series and submitted to the South Central Coastal Information Center (SCCIC) at California State University Fullerton (CSUF). Resources shall be identified, cleaned, and curated at a museum or education institution for the benefit of future generations.</td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could potentially impact human remains</td>
<td>The LACCD shall ensure that impacts to cultural resources related to the unanticipated discovery of human remains are reduced to less than significant level by ensuring that, in the event that human remains are encountered, construction in the area of the find shall cease, and the remains will stay in-situ pending definition of an appropriate plan. The Los Angeles County Coroner will be contacted to determine the origin of the remains. In the event the remains are Native American in origin, the NAHC will be contacted to determine necessary procedures for protection and preservation of the remains, including reburial.</td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could potentially impact paleontological resources</td>
<td>The LACCD shall ensure that potential impacts to cultural resources shall be reduced to a less than significant level whereby in the event paleontological discoveries are encountered, all excavation shall cease in the area of the find and a paleontologist shall be contact who shall devise a plan for recovery in accordance with standards for such established by the Society of Vertebrate Paleontology. Any paleontological resources shall be documented and submitted to the Natural History Museum of Los Angeles County for curation.</td>
</tr>
<tr>
<td>Construction and operation of the Athletic Fields could impact archaeological resources/sacred sites/human remains</td>
<td>The LACCD shall ensure that potential impacts to archaeological resources in the form of prehistoric sacred sites or human remains shall be reduced to below the level of significance by the presence of Native American Monitor of Gabrielino/Tongva or Tataviam descent to monitor all earth moving activities.</td>
</tr>
</tbody>
</table>

FLOOD CONTROL AND HYDROLOGY

<table>
<thead>
<tr>
<th>Potential Effects</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding during construction of Athletic Fields could cause damage to project, equipment, and staff</td>
<td>Provide project-specific hydraulics and hydrology report as part of final design to analyze and present engineering design criteria</td>
</tr>
<tr>
<td>Flooding during operation of Athletic Fields could cause damage to Athletic Fields structures</td>
<td>Project shall comply with development guidelines for within the ACOE inundation flood elevations and shall not include floodable restrooms, floodable structures or field improvements that cannot sustain inundation and acceptable maintenance costs</td>
</tr>
</tbody>
</table>
5.0 Mitigation

<table>
<thead>
<tr>
<th>Potential Effects</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR QUALITY</td>
<td></td>
</tr>
<tr>
<td>Emissions of PM${10}$ and PM${2.5}$ could exceed local standards.</td>
<td>Incorporate the following SCAQMD mitigation measures: Diesel-powered equipment shall use low sulfur diesel, as defined in SCAQMD Rule 431.2; develop and implement a Construction Traffic Emission Management Plan to minimize emissions from vehicles; suspend all construction equipment during first-stage smog alerts; use electricity or alternate fuels for on-site construction equipment instead of diesel equipment; maintain construction equipment by conducting regular tune-ups and retard diesel engine timing; use electric welders to avoid emissions from gas or diesel welders; use on-site electricity or alternative fuels rather than diesel or gasoline powered generators; evaluate the feasibility of retrofitting the large off-road construction equipment that will be operating for significant periods; reduce traffic speeds on all unpaved roads to 15 miles per hour; water active sites at least three times daily; schedule construction activities to off-peak hours where practical.</td>
</tr>
<tr>
<td>Emissions of greenhouse gases (GHG) could exceed local standards</td>
<td>Incorporate the following SCAQMD mitigation measures: Use low or zero-emission vehicles, including construction vehicles. Create car sharing programs. Accommodations for such programs include providing parking spaces for the car share vehicles at convenient locations accessible by public transportation. Increase the cost of driving and parking private vehicles by, e.g., imposing tolls and parking fees. Provide shuttle service to public transit. Provide public transit incentives such as free or low-cost monthly transit passes. Provide adequate bicycle parking near building entrances to promote cyclist safety, security, and convenience. Institute a telecommute and/or flexible work hours program. Provide information, training, and incentives to encourage participation. Provide incentives for equipment purchases to allow high-quality teleconferences. Provide education and information about public transportation. Develop a commute trip reduction plan that encourages students, staff, and faculty to consider alternative transportation modes. Develop a Safe Route to School program that allows and promotes bicycling and walking to school.</td>
</tr>
<tr>
<td>SOILS AND GEOLOGY</td>
<td></td>
</tr>
<tr>
<td>Surface deformation and ground shaking from earthquakes could impact structures</td>
<td>Design and construct Nursery Property and Athletic Fields structures to the seismic design requirements for ground shaking specified in the California Building Code (CBC) for Seismic Zone 4, at a minimum.</td>
</tr>
<tr>
<td>Liquefaction at the Athletic Fields site could impact structures</td>
<td>Structures shall not be constructed within the limits of, or adjacent to, the Pacoima Wash on the LAMC Athletics Field site unless designs are based on a site-specific geotechnical and geological investigation, performed as part of the design studies, that focuses on potential liquefaction due to the potential for shallow groundwater and potentially liquefiable loose sands.</td>
</tr>
<tr>
<td>Landslides at the Athletic Fields site could impact structures</td>
<td>Site-specific geotechnical and geological investigations that evaluate slope stability should be performed for existing and proposed site slopes.</td>
</tr>
<tr>
<td>Seiche hazards at the Athletic Fields site could impact structures</td>
<td>Site-specific geotechnical and geological investigations that focus on potential seiche hazards shall be performed as part of the design studies. Protection methods such as berms, dams and levees shall be evaluated for effectiveness or constructed.</td>
</tr>
</tbody>
</table>
5.0 Mitigation

<table>
<thead>
<tr>
<th>Potential Effects</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>EROSION AND SEDIMENTATION</td>
<td></td>
</tr>
<tr>
<td>Erosion at the Athletic Fields site could impact structures</td>
<td>To protect the slope between the Athletic Fields and Pacoima Wash from erosion, site-specific geotechnical, geological and hydrological studies that focus on erosion hazards, shall be performed as part of the design studies. Revetment material (rip-rap and concrete lining) shall be properly placed on the west bank of the Pacoima Wash adjacent to the site, Construction and post-construction erosion prevention best management practices (BMPs) shall be followed as required by the Stormwater Pollution Prevention Plan (SWPPP) and National Pollutant Discharge Elimination System (NPDES).</td>
</tr>
<tr>
<td>SAFETY, HEALTH, Hazardous Wastes and Solid Wastes</td>
<td></td>
</tr>
<tr>
<td>Heavy construction equipment would be used during the proposed project that could result in the combustion or release of flammable fuels, and dust and debris created during demolition activities could expose the public to hazardous materials.</td>
<td>A work plan shall be prepared to address the management of accidental releases in the event of an upset or accident and to control dust and debris during demolition. This plan shall be submitted for approval by the appropriate regulatory authorities before any construction activities are performed.</td>
</tr>
<tr>
<td>Athletic Fields would be located in a Very High Fire Hazard Severity Zone, construction activities could cause a significant impact related to wildfires.</td>
<td>Require fire safety measures during construction activities. Have water truck always available. Post construction, add landscaping and irrigation to reduce potential fire severity.</td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
</tr>
<tr>
<td>Project construction noise would exceed the 5 decibel CNEL increase standard set forth in the City's Draft CEQA Thresholds Guide</td>
<td>Incorporate the noise control measures within the plans, specifications, and estimates (“bid”) documents for each construction project to reduce noise impact, including: 1) compliance with City of Los Angeles standards for short-term operation of mobile equipment and long-term construction operations of stationary equipment; 2) compliance with owner-approved Noise Control Plan; 3) preparation of readily visible signs indicating “Noise Control Zone”; 4) utilization of noise control device that meets original specifications and performance; 5) usage of fixed noise-producing equipment to comply with regulations in the course of project activity; 6) usage of mobile or fixed noise-producing equipment that are equipped to mitigate noise as much as it is practical; 7) use of electrically-powered equipment; 8) use of noise control techniques, procedures, and acoustically treated equipment to minimize impact noise; 9) erection of temporary noise barriers and control curtains where project activity is unavoidably close to noise-sensitive receptors; 10) use of route based on the least overall noise impact; 11) use of project-related vehicles in designated parking area; 12) location of stockpiles, staging areas, and other noise-producing operations as far as practicable from noise-sensitive receptors; 13) limitation with use of horns, whistles, alarms, and bells; 14) avoidance of loudspeakers within 500 feet of the project boundaries; 15) avoidance of shouting, yelling, screaming or profanity at location outside the project site boundaries; 16) limitation of construction between hours of 9:30 a.m. to 3:30 p.m. Need to discuss hours with LACCD.</td>
</tr>
<tr>
<td>TRAFFIC</td>
<td></td>
</tr>
<tr>
<td>The Maclay Avenue/Harding Street intersection could experience LOS F during the PM Peak Hour</td>
<td>Signalize intersection prior to Project completion</td>
</tr>
</tbody>
</table>
5.0 Mitigation

Potential Effects

<table>
<thead>
<tr>
<th>AESTHETICS</th>
<th>Mitigation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletic Fields buildings and playing fields would reduce visual quality from public views, would be incongruous with the partially natural appearing existing character of the site, would dominate attention; lighting would introduce ambient lighting that, in the absolute darkness of the existing site, would be noticeable; and development would not be consistent with policies of the Sylmar Community Plan that encourages the retention of passive and visual open space and creation of buffers between different land uses.</td>
<td>Install substantial screen landscaping along the easterly side of the Athletic Fields Complex such that the playing fields and its facilities are not visible from Mountain Glen Terrace.</td>
</tr>
</tbody>
</table>
6.0 COMPLIANCE WITH APPLICABLE FEDERAL ENVIRONMENTAL LAWS AND REGULATIONS

Federal laws, regulations, plans, and standards that are related to the proposed project, their applicability and conformance section, are summarized below in Table 6-1 Federal Laws and Regulations. The proposed project would be constructed and operated in compliance with all applicable federal regulatory compliance.

The applicable federal laws, regulations, plans, and standards for the proposed project are listed below:

- Clean Water Act
 - Section 401 of the CWA
 - Section 402 of the CWA, National Pollutant Discharge Elimination System Program
 - Section 404 of the CWA
- Flood Disaster Protection Act of 1973
- Federal Endangered Species Act
- Migratory Bird Treaty Act
- Executive Orders
- National Historic Preservation Act
- National Register of Historic Places
- Evaluation of Resources Less than 50 Years Old
- Native American Graves Protection & Repatriation Act of 1990
- Land and Water Conservation Fund Act of 1965
- Lopez Dam Basin Master Plan
- Federal Clean Air Act
- US EPA Endangerment Finding
- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)
- Superfund Amendment and Reauthorization Act Title II (SARA)
- The U.S. Department of Transportation (DOT)
- Resource Conservation and Recovery Act (RCRA)
- Federal Energy Policy and Conservation Act and Amendments
- Environmental Justice and Title VI of the Civil Rights Act of 1964
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
6.0 Compliance with Applicable Federal Environmental Laws and Regulations

Table 6-1 Federal Laws and Regulations

<table>
<thead>
<tr>
<th>Federal Laws and Regulations</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Water Act</td>
<td>The Clean Water Act (CWA) is the cornerstone of surface water quality protection in the United States. The statute employs a variety of regulatory and non-regulatory tools to sharply reduce direct pollutant discharges into waterways, finance municipal wastewater treatment facilities, and manage polluted runoff. These tools are employed to achieve the broader goal of restoring and maintaining the chemical, physical, and biological integrity of the nation’s waters. The nationwide implementation of the CWA is the responsibility of the USEPA.</td>
</tr>
<tr>
<td>Section 401 of the CWA</td>
<td>Section 401 of the CWA requires that any applicant for a federal permit that involves activities resulting in a discharge to "waters of the U.S." shall provide a certification from the State in which the discharge is proposed. The State certification needs to conclude that the discharge will comply with the applicable provisions under the CWA. Therefore, before the ACOE will issue a Section 404 permit, applicants must apply for and receive a CWA Section 401 Water Quality Certification. In the State of California, the SWRCB and the RWQCBs administer the CWA Section 401 Water Quality Certification program.</td>
</tr>
<tr>
<td>Section 402 of the CWA, National Pollutant Discharge Elimination System Program</td>
<td>The CWA makes it illegal to discharge pollutants from a point source to the waters of the United States. Section 402 of the CWA creates the National Pollutant Discharge Elimination System (NPDES) regulatory program. This is the primary implementation program for regulating discharges of pollutants into waters of the United States. Point sources must obtain a discharge permit from the proper authority (usually a state, sometimes EPA, a tribe or a territory). The NPDES permit programs in California are administered by the SWRCB and by nine regional boards that issue NPDES permits and enforce regulations within their respective region. The LAMC lies within the jurisdiction of the Los Angeles RWQCB. Though the CWA does contain a long-range goal of zero discharge of pollutants, the NPDES permits set limits on the amount of various pollutants that a source can discharge at a given time. In addition, through the NPDES regulatory program, an NPDES permit is required for storm water discharge from storm drain systems, construction sites that disturb one acre or more and industrial facilities.</td>
</tr>
<tr>
<td>Flood Disaster Protection Act of 1973</td>
<td>With the passage of the National Flood Insurance Act of 1968, the U.S. Congress established the National Flood Insurance Program (NFIP), enabling property owners in participating communities to purchase insurance as a protection against flood losses in exchange for State and community floodplain management regulations that reduce future flood damages. Participation in the NFIP is based on an agreement between communities and the federal government. If a community adopts and enforces a floodplain management ordinance to reduce future flood risk to new construction in floodplains, the federal government will make flood insurance available within the community as a financial protection against flood losses. This insurance is designed to provide an insurance alternative to disaster assistance to reduce the escalating costs of repairing damage to buildings and their contents caused by floods. The Flood Disaster Protection Act of 1973 prohibits federal agencies from providing financial assistance for acquisition or construction of buildings and certain disaster assistance in the floodplains in any community that did not participate in the NFIP by July 1, 1975, or within 1 year of being identified as flood-prone. This law required federal agencies and federally insured or regulated lenders to require flood insurance on all grants and loans for acquisition or construction of buildings in designated Special Flood Hazard Areas (SFHAs) in communities that participate in the NFIP. This requirement is referred to as the Mandatory Flood Insurance Purchase Requirement. The SFHA is that land within the floodplain of a community subject to a 1 percent or greater chance of flooding in any given year, commonly referred to as the 100-year flood. The 1-percent-annual-chance flood (or 100-year flood) represents a magnitude and frequency that has a statistical probability of being equaled or exceeded in any given year, the 100-year flood has a 26 percent (or 1 in 4) chance of occurring over a 30-year period. In 1994, Congress amended the 1968 Act and the 1973 Act with the National Flood Insurance Reform Act (NFIRA). The 1994 Act included measures to increase compliance by mortgage lenders; increase the amount of flood insurance coverage that can be purchased; provide flood insurance coverage for the cost of complying with floodplain management regulations by individual property owners; establish a Flood Mitigation Assistance grant program to assist States and communities to develop mitigation plans and implement measures to reduce future flood damages to structures; codify the NFIP’s Community Rating System; and require Federal Emergency Management Agency (FEMA) to assess its flood hazard map inventory at least once every 5 years. The FEMA map specific to this project location was revised September 26, 2008.</td>
</tr>
</tbody>
</table>
Federal Laws and Regulations

<p>| Federal Endangered Species Act | The Federal Endangered Species Act (FESA) protects plants and wildlife that are listed by the United States Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) as endangered or threatened. Section 9 of FESA prohibits the taking of endangered wildlife, where taking is defined as any effort to "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in such conduct" (50 CFR 17.3). For plants, this statute governs removing, possessing, maliciously damaging, or destroying any endangered plant on federal land, and removing, cutting, digging up, damaging, or destroying any endangered plant on non-federal land in knowing violation of state law (16 United States Code [USC] 1538). The Federal Endangered Species Act (FESA) protects plants and wildlife that are listed by the United States Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) as endangered or threatened. Section 9 of FESA prohibits the taking of endangered wildlife, where taking is defined as any effort to "harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, collect, or attempt to engage in such conduct" (50 CFR 17.3). For plants, this statute governs removing, possessing, maliciously damaging, or destroying any endangered plant on federal land, and removing, cutting, digging up, damaging, or destroying any endangered plant on non-federal land in knowing violation of state law (16 United States Code [USC] 1538). Under Section 7 of FESA, federal agencies are required to consult with the USFWS if their actions, including permit approvals or funding, could adversely affect an endangered species (including plants) or its critical habitat. Through consultation and the issuance of a biological opinion, the USFWS may issue an incidental take statement allowing take of the species that is incidental to another authorized activity, provided the action will not jeopardize the continued existence of the species. FESA specifies that the USFWS designate habitat for a species at the time of its listing in which are found the physical or biological features “essential to the conservation of the species,” or which may require “special management consideration or protection...” (16 USC §1533(a)(3); 16 USC §1532(a)(5)). This designated Critical Habitat is then afforded the same protection under the FESA as individuals of the species itself, requiring issuance of an Incidental Take Permit prior to any activity that results in “the destruction or adverse modification of habitat ... determined ... to be critical” (16 USC §1536(a)(2)). |
| Migratory Bird Treaty Act | The Migratory Bird Treaty Act (MBTA) implements international treaties between the United States and other nations created to protect migratory birds, any of their parts, eggs, and nests from activities such as hunting, pursuing, capturing, killing, selling, and shipping, unless expressly authorized in the regulations or by permit. As authorized by the MBTA, the USFWS issues permits to qualified applicants for the following types of activities: falconry; raptor propagation; scientific collecting; special purposes (rehabilitation, education; migratory game bird propagation and salvage); take of depredating birds; taxidermy; and waterfowl sale and disposal. The regulations governing migratory bird permits can be found in 50 CFR part 13 General Permit Procedures and 50 CFR part 21 Migratory Bird Permits. The State of California has incorporated the protection of birds of prey in Sections 3800, 3513, and 3503.5 of the California Fish and Game Code (CFGC). |
| Executive Orders | Invasive Species—Executive Order (EO) 13112 (1999), issued on February 3, 1999, promotes the prevention and introduction of invasive species and provides for their control, and minimizes the economic, ecological, and human health impacts that invasive species cause through the creation of the Invasive Species Council and Invasive Species Management Plan. Protection of Wetlands—EO 11990 (1977), issued on May 24, 1977, helps avoid the long-term and short-term adverse impacts associated with destroying or modifying wetlands, and avoiding direct or indirect support of new construction in wetlands when there is a practicable alternative. Migratory Bird—EO 13186 (2001), issued on January 10, 2001, promotes the conservation of migratory birds and their habitats and directs federal agencies to implement the Migratory Bird Treaty Act. Protection and Enhancement of Environmental Quality—EO 11514 (1970), issued on March 5, 1970, supports the purpose and policies of NEPA and directs federal agencies to take measures to meet national environmental goals. |</p>
<table>
<thead>
<tr>
<th>Federal Laws and Regulations</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Historic Preservation Act</td>
<td>Section 106 of the National Historic Preservation Act (NHPA) of 1966, as amended, declared a national policy of historic preservation and encourages such preservation. It established an Advisory Council on Historic Preservation (ACHP) and provided procedures for the federal agency to follow if a proposal could affect a property included or eligible for inclusion in the National Register of Historic Places (NRHP). The ACHP developed procedure 36 Code of Federal Regulations (CFR) Part 800, which must be followed on any federal project of action.</td>
</tr>
<tr>
<td>National Register of Historic Places</td>
<td>The NRHP is the official list of properties recognized for their significance and deemed worthy of preservation. The NRHP Criteria for Evaluation offers a guide to be used by federal, state, and local governments, private groups, and citizens to identify the nation’s cultural resources and to indicate what properties should be considered for protection from destruction or impairment. As established in the NHPA of 1966, to be listed in the NRHP, or to be determined eligible for listing, properties must meet certain criteria for historic or cultural significance. Qualities of significance may be found in aspects of American history, architecture (interpreted in the broadest sense to include landscape architecture and planning), archaeology, engineering, and culture. A property is eligible for the NRHP if it is significant under one or more of the following criteria: Criterion A: It is associated with events that have made a significant contribution to the broad patterns of our history. Criterion B: It is associated with the lives of persons significant in our past. Criterion C: It embodies the distinctive characteristics of a type, period, or method of construction, or that represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components may lack individual distinction. Criterion D: It has yielded, or may be likely to yield information important in prehistory or history. To be eligible, qualities of integrity must also be evident in the resource, measured by the degree to which it retains its historic location, design, setting, materials, workmanship, feeling, and association. In general, the resource must be 50 years old to be considered for the NRHP, but there are exceptions and overriding considerations to this criterion. Listing in the NRHP does not, in and of itself, provide protection for a historic resource. The primary effect of NRHP listing for the owners of historic buildings is the availability of financial and tax incentives. In addition, for projects that receive federal funding, the Section 106 process must be completed.</td>
</tr>
<tr>
<td>Evaluation of Resources Less than 50 Years Old</td>
<td>The NRHP guidelines allow for buildings less than 50 years old to be considered under Criteria Consideration 6, which states that “a property (which has achieved) significance within the past fifty years is eligible if it is of exceptional importance.” The explanation of the guideline is as follows: Fifty years is a general estimate of the time needed to develop historical perspective and to evaluate significance. This consideration guards against the listing of properties of passing contemporary interest and ensures that the NRHP is a list of truly historic places. It has been determined that previously identified historic archaeological sites that occur on site are not eligible for inclusion under the NRHP.</td>
</tr>
<tr>
<td>Native American Graves Protection & Repatriation Act of 1990</td>
<td>The Native American Graves Protection & Repatriation Act of 1990 sets provisions for the intentional removal and for their inadvertent discovery of human remains and other cultural items from federal and tribal lands and for their inadvertent discovery. It clarifies the ownership of human remains and sets forth a process for repatriation of human remains and associated funerary objects and sacred religious objects to the Native American groups claiming to be lineal descendants or culturally affiliated with the remains or objects. It requires any federally funded institution housing Native American remains or artifacts to compile an inventory of all cultural items within the museum or with its agency and to provide a summary to any Native American tribe claiming affiliation.</td>
</tr>
<tr>
<td>Land and Water Conservation Fund Act of 1965</td>
<td>The Land and Water Conservation Fund Act of 1965 was established to assist federal, state, and local governments in the acquisition and/or development of public outdoor recreation facilities. Administered at the state level by the California Department of Parks and Recreation, Land and Water Conservation Fund (LWCF) grants can provide up to 50 percent of the allowable costs for approved acquisition or development projects. Administrative policies, procedures, and guidelines for the LWCF grants awarded to the states by the Department of Interior, National Park Service are provided in the LWCF Manual.</td>
</tr>
</tbody>
</table>
6.0 Compliance with Applicable Federal Environmental Laws and Regulations

<table>
<thead>
<tr>
<th>Federal Laws and Regulations</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopez Dam Basin Master Plan</td>
<td>The Lopez Dam Basin Master Plan, prepared by the ACOE, presents an overall view of the present and proposed uses for federally owned land in the Lopez Dam Basin. Land designated for recreation development may be leased to local sponsors interested in developing, operating, and maintaining recreation facilities within specified areas. The Master Plan describes all existing recreation facilities, and potential future recreation opportunities by any future recreation lessees. The Lopez Dam Basin Master Plan designates the ACOE Property proposed for development of the Athletic Fields for recreational uses. The property is located within Planning Area 1, which calls for intensive recreation with potential for high-impact recreation.</td>
</tr>
</tbody>
</table>
| Federal Clean Air Act | The U.S. Environmental Protection Agency (EPA) enforces the Federal Clean Air Act (FCAA) and the associated national ambient air quality standards (NAAQS) for carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), sulfur dioxides (SO2), respirable particulate matter (PM10), fine particulate matter (PM2.5), and lead. These air quality standards are concentrations above which the pollutant is known to cause adverse health effects.

The EPA defines boundaries of “nonattainment” areas (i.e., geographical areas whose air quality does not meet Federal air quality standards designed to protect public health). A nonattainment designation indicates that the air quality violates an ambient air quality standard. An attainment designation indicates that the air quality does not violate the established standard. An unclassified designation indicates that there are insufficient data for determining attainment or nonattainment. EPA requires that States submit State Implementation Plans (SIPs) demonstrating how clean air will be attained or maintained with each air quality basin.

The project site is located in Los Angeles County, within the South Coast Air Basin (Basin). The Basin includes the southern two-thirds of Los Angeles County, all of Orange County, and the western urbanized portions of Riverside and San Bernardino counties. Please refer to Table 3.2-2 for state and federal attainment/non-attainment designations. |
| US EPA Endangerment Finding | On April 2, 2007, in Massachusetts v. EPA, 549 U.S. 497 (2007), the Supreme Court found that greenhouse gases are air pollutants covered by the Clean Air Act. The Court held that the Administrator must determine whether or not emissions of greenhouse gases from new motor vehicles cause or contribute to air pollution which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned decision. The Proposed Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Clean Air Act was signed on April 17, 2009. On April 24, 2009, the proposed rule was published in the Federal Register under Docket ID No. EPA-HQ-OAR-2009-0171. The Administrator proposed to find that:

\[
\text{[G]reensh} \text{h house g} \text{ases in the atmosphere endanger the public health and welfare of current and future generations. Concentrations of greenhouse gases are at unprecedented levels compared to the recent and distant past. These high atmospheric levels are the unambiguous result of human emissions, and are very likely the cause of the observed increase in average temperatures and other climatic changes. The effects of climate change observed to date and projected to occur in the future—including but not limited to the increased likelihood of more frequent and intense heat waves, more wildfires, degraded air quality, more heavy downpours and flooding, increased drought, greater sea level rise, more intense storms, harm to water resources, harm to agriculture, and harm to wildlife and ecosystems—are effects on public health and welfare within the meaning of the Clean Air Act.}
\] |
| Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) | CERCLA, also known as Superfund, is a federal law designed to clean up abandoned hazardous waste sites that may endanger public health or the environment. This law outlines the potential liability related to the cleanup of hazardous substances, available defenses to such liability, appropriate inquiry into site status under Superfund, and statutory definitions of hazardous substances and petroleum products. The proposed project would be subject to CERCLA for the cleanup of any hazardous substances. |
6.0 Compliance with Applicable Federal Environmental Laws and Regulations

<table>
<thead>
<tr>
<th>Federal Laws and Regulations</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfund Amendment and Reauthorization Act Title II (SARA)</td>
<td>SARA of 1986 is the Emergency Planning and Community Right-to-Know Act. Facilities are required to report the following items on U.S. Environmental Protection Agency (EPA) Form R, the Toxic Chemical Release Inventory Reporting Form: facility identification, off-site locations to which toxic chemicals are transferred in wastes, chemical-specific information, and supplemental information. Form R requires a facility to list the hazardous substances that are handled on site and to account for the total aggregate releases of listed toxic chemicals for the calendar year. Releases to the environment are to include emissions to the air, discharges to surface water, and on-site releases to land and underground injection wells. The proposed project would be subject to SARA for the use, storage, transport, disposal, or release of toxic chemicals.</td>
</tr>
<tr>
<td>U.S. Department of Transportation (DOT) Regulations</td>
<td>The U.S. DOT regulates the transport of hazardous materials under Title 49 of the Code of Federal Regulations (CFR, Title 49). Title 49 prohibits the release of hazardous materials to the environment and requires all containers to meet strict standards for impact resistance, strength, and packing compatibility. In addition, Title 49 contains specific requirements for the training of drivers in inspection, operation of vehicles, loading and unloading of materials, the properties and hazards of the materials transported, and the use of vehicle controls and equipment, including operation of emergency equipment. The proposed project would be subject to DOT requirements related to the use, generation, storage, and disposal of hazardous wastes.</td>
</tr>
<tr>
<td>Resource Conservation and Recovery Act (RCRA)</td>
<td>The federal RCRA of 1976 was the first major federal act regulating the potential health and environmental problems associated with the nation’s growing volume of municipal and industrial waste. It amended the Solid Waste Disposal Act of 1965 and gave the U.S. EPA the authority to control hazardous and nonhazardous solid wastes from the cradle to the grave (i.e., generation, transportation, treatment, storage and disposal). RCRA and the implementation regulations developed by the U.S. EPA provide the general framework for the national hazardous and nonhazardous waste management systems. This framework includes the determination of whether hazardous wastes are being generated, techniques for tracking wastes to eventual disposal, and the design and permitting of hazardous waste management facilities. In 1984, RCRA was expanded with the Hazardous and Solid Waste Amendments of 1984. The amendments strengthened the law by covering small quantity generators of hazardous waste and establishing requirement for hazardous waste incinerators, and the closing of substandard landfills. In 1986, the law was expanded further to regulate underground storage tanks and other leaking waste storage facilities. Hazardous waste regulations promulgated in 1991 address siting, design, construction, operation, monitoring, corrective action, and closure of disposal facilities. Additional regulations addressing solid waste issues are contained in Title 40, Code of Federal Regulations (CFR), Part 258. The proposed 2009 Master Plan would be subject to the requirements of RCRA related to the generation, storage, or disposal of hazardous and nonhazardous solid wastes.</td>
</tr>
<tr>
<td>Federal Energy Policy and Conservation Act and Amendments</td>
<td>Minimum standards of energy efficiency for many major appliances were established by the U.S. Congress in the federal Energy Policy and Conservation Act (EPCA) of 1975, and have been subsequently amended by succeeding energy legislation, including the federal Energy Policy Act of 2005. The U.S. Department of Energy (DOE) is required to set appliance efficiency standards at levels that achieve the maximum improvement in energy efficiency that is technologically feasible and economically justified.</td>
</tr>
<tr>
<td>Energy Independence and Security Act of 2007</td>
<td>Most recently, HR 6, the federal Energy Independence and Security Act of 2007 established new standards for a few equipment types not already subjected to a standard, and updated some existing standards. Perhaps the most significant new standard that HR 6 established is for general service lighting which will be deployed in two phases. First, by 2012-2014 (phasing in over several years), common light bulbs will be required to use about 20-30% less energy than present incandescent bulbs. Second, by 2020, light bulbs must consume 60% less energy than today’s bulbs; this requirement will effectively phase out the incandescent light bulb.</td>
</tr>
</tbody>
</table>
6.0 Compliance with Applicable Federal Environmental Laws and Regulations

<table>
<thead>
<tr>
<th>Federal Laws and Regulations</th>
<th>Applicability</th>
</tr>
</thead>
</table>
| Environmental Justice and Title VI of the Civil Rights Act of 1964 | Environmental Justice and Title VI of the Civil Rights Act of 1964 and related statutes ensure that individuals are not excluded from participation in, denied the benefit of, or subjected to discrimination under any program or activity receiving federal financial assistance on the basis of race, color, national origin, age, sex, or disability. Executive Order 12898 regarding environmental justice directs that programs, policies, and activities not have a disproportionately high and adverse human health and environmental effect on minority and low-income populations. According to these regulations:
*Minority populations are persons of Hispanic or Latino origin of any race; Blacks; American Indian/Alaska Natives; and Asians or Pacific Islanders. Low-income populations are persons living below the poverty level.
The U.S. Census Bureau uses a set of income thresholds that vary by family size and composition to determine who would be considered living below the poverty level.* |
| Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) | The FIFRA provides the basis for regulation, sale, distribution and use of pesticides in the U.S. |
6.0 Compliance with Applicable Federal Environmental Laws and Regulations
7.0 COORDINATION AND RELATED ENVIRONMENTAL DOCUMENTATION

This section provides a summary of coordination and environmental documentation related to the Proposed Project. The below topics are discussed in the following sections of this chapter:

- Shared Governance Process and LAMC Facilities Master Plan Design Approach
- California Environmental Quality Act (CEQA) Process
- Public Scoping
- Distribution of EA
- Discretionary Actions
- Responsible Agencies
- Past, Present, and Reasonably Foreseeable Future Actions

7.1 Shared Governance Process and LAMC Facilities Master Plan Design Approach

LAMC has engaged in extensive planning efforts that have lead to the choice of seeking a lease of the ACOE Property along the Pacoima Wash for use as athletic fields. These planning efforts are summarized below.

During the preparation of the LAMC 2009 Facilities Master Plan, the College embarked on an intensive six-month master planning process called the Shared Governance and Community Outreach process. Development of the 2009 Facilities Master Plan was guided by the college president and involved a broad-based community of stakeholders, including college leadership, key faculty members, administrators, staff, students, nearby residents and business leaders. Meetings were held with key stakeholders in the community and within the campus. Frequent meetings were also held with college administrators, department chairs, and user groups. Workshops were held with faculty, staff and student leaders. Two town hall meetings with invitation extended to the entire campus were conducted to solicit ideas for the 2009 Facilities Master Plan. Overall, the mission statement of the College was a major conceptual driver for the development of the 2009 Facilities Master Plan: The mission of Los Angeles Mission College is the success of our students. Master planning issues were identified and discussed, goals and objectives were established, and several master planning scenarios were developed and evaluated.

Analyzing the existing campus in the context of the surrounding community generated ideas about how to improve the consolidation of the campus by carefully integrating the proposed Athletic Fields with the Health, Fitness, and Athletics Building, providing state of the art directed field lighting, landscaping, solar energy, and new facilities. The Shared Governance and Community Outreach process culminated in the design and features of the proposed 2009 Facilities Master Plan.

Under the LAMC 2009 Facilities Master Plan the College will bring all disciplines together, including the athletics programs, in a complete and improved campus environment. Learning spaces and
social gathering places will be inviting and inspirational, and it is anticipated that the inclusive learning community will foster collegiality, excellence and encourage broader student participation.

The LAMC Facilities Master Plan provides a rational, yet flexible, framework for the optimum, long-term development of the campus. While changes and new ideas have occurred, these are expected and encouraged. As the Facilities Master Plan is implemented, every effort will be made to protect the integrity and spirit of the Master Plan. The College will witness a blossoming of new energy and vitality on the campus as students gather and interact in the soon to completed East Campus and new collegiate athletics begins in the proposed Athletic Fields.

Planned transit service to the East Campus will encourage more students, visitors, faculty and staff to arrive at the campus via public transportation, reducing traffic and parking issues and adding to the sustainable design and “green” character of the campus. LAMC stands on the threshold of a new era, an era during which its mission of providing “the success of our students” for everyone in the community will become a reality.

7.2 CEQA Process

In addition to compliance with the National Environmental Policy Act (NEPA), state law requires that the proposed project comply with the CEQA. In compliance with CEQA guidelines, on April 10, 2009 an Initial Study was prepared by the Los Angeles Community College District (LACCD) in order to identify environmental issues for study in the Environmental Impact Report. Fifteen issue areas that were expected to have a significant impact on the environment were carried forward for evaluation in the Draft Subsequent Environmental Impact Report (Draft EIR) (shown on Table 7-1). Two issue areas that were not expected to result in significant impacts to the environment were eliminated from further CEQA analysis (1) agricultural resources; and 2) population and housing. A Notice of Preparation (NOP) of the EIR for the LAMC 2009 Facilities Master Plan was prepared and circulated, along with the Initial Study, for a 30-day review period that began on April 10, 2009 and closed on May 11, 2009 (written comments were accepted until May 20, 2009).

Table 7-1 Environmental Issues Requiring Analysis in Subsequent EIR

<table>
<thead>
<tr>
<th>Aesthetics</th>
<th>Land Use and Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Mineral Resources</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>Noise</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>Public Services</td>
</tr>
<tr>
<td>Energy, Conservation, and Sustainability</td>
<td>Recreation</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>Transportation and Traffic</td>
</tr>
<tr>
<td>Hazards and Hazardous Materials</td>
<td>Utilities</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td></td>
</tr>
</tbody>
</table>

Source: URS Corporation, May 2009

A Draft Subsequent Environmental Impact Report (Draft EIR) has been prepared for the LAMC 2009 Facilities Master Plan and its subsequent projects. Unavoidable significant environmental impacts are expected related to air quality (including greenhouse gases), noise, and traffic. The Draft EIR is available for a 45-day public review period ending on September 1, 2009.
7.0 Coordination and Related Environmental Documentation

The LAMC and LACCD will hold two public comment meetings on the Draft EIR during the 45-day review period. EIR public comment meetings are planned to be held on August 13, 2009 and August 15, 2009. The purpose of these meetings is to provide the public an opportunity to learn about the 2009 Facilities Master Plan refinement and to provide comments on the adequacy of the EIR under CEQA. At the meetings there will be an opening presentation in which LAMC will briefly present the Proposed LAMC 2009 Facilities Master Plan and the findings of the Draft EIR. After this presentation, the public will be invited to provide comments on the adequacy of the analysis in the Draft EIR.

Following the 45-day public review of the Draft EIR, the Final Subsequent EIR will be prepared, including responses to comments, and provided to the LACCD Board of Trustees for certification of compliance with CEQA and for review and consideration as part of the decision-making process for the proposed 2009 Facilities Master Plan.

7.3 Public Scoping

The LACCD and the LAMC provided extensive public outreach to encourage responsible agency and public participation in the scoping and preparation of the Draft EIR. Issues areas identified in the scoping meetings for the EIR have been carried forward and are addressed in accordance with NEPA in this EA. This section presents a summary of the EIR Public Scoping process.

The availability of the NOP and Initial Study and an invitation to participate in the community meetings was published on April 17, 2009 in the legal notice section of the Los Angeles Daily News and La Opinion (Spanish). Two scoping meetings were held at Los Angeles Mission College on April 25 and April 28, 2009 to gather public input on issue areas regarding the proposed revisions to the LAMC Facilities Master Plan. A public comment station format was used during the two scoping meetings. Each of the scoping meetings began with a presentation by the President of Los Angeles Mission College, the master plan architect, and the EIR/EA consultant.

The purpose of the opening presentation was to provide detailed information to the public about the proposed LAMC 2009 Facilities Master Plan, the EIR process, and the most effective ways for the public to have their issues addressed in the EIR process. Specifically, public input was encouraged to identify possible: environmental impacts of development in new areas, methods to minimize impacts and alternative nearby sites where the Athletic Fields could be developed with less impacts.

Following the opening presentation, members of the public were invited to meet with the teams of representatives from the master plan architect and the EIR consultant located in 6 project information stations and 3 public comment stations throughout the room. All comments were recorded on flipcharts. In addition members of the public were invited to speak to a court reporter who recorded verbal comments. A Spanish interpreter was also provided during the scoping meetings to facilitate public participation by the Spanish speaking community members. Members of the public were informed that they could also provide written comments after the scoping meetings throughout the 30-day public comment period established by the State Office of Planning and Research. At the request of the public, LAMC agreed to accept additional scoping comments beyond the formal 30-day period up to Friday, May 15, 2009 (written comments were accepted until May 20, 2009).
The 68 total comments received at the scoping meetings were recorded by the court reporter or on flip-charts located at each information station. Written comments were submitted on 17 comment forms dropped off at the comment stations. An additional 10 comment letters were received in the mail and e-mail. Copies of comments received between April 10th and May 20th are found in Appendix A of the LAMC 2009 Facilities Master Plan EIR. Agency letters were received from the Los Angeles City Planning Department and South Coast Air Quality Management District.

7.4 Distribution of EA

The ACOE will distribute the Notice of Availability (NOA) and Draft EA to applicable federal agencies and to interested organizations and individuals, including the Federal Emergency Management Agency and US Fish and Wildlife Service. Copies of the Draft EA will be available from the U.S. Army Corps of Engineers. The Notice of Availability of the Draft EA and Invitation to Comment on the Draft EA will be:

- Published in the Federal Register.
- Published in local newspapers.
- Posted at the project site and at the start of the 45-day review period.
- Mailed to property owners near the project site.
- Mailed to registered attendees of the EIR scoping meetings, individuals who provided scoping comments and interested parties who requested notification of the availability of the EA.

This Draft EA will also be made available during the public review period at the following local libraries and will be published on the Internet at: <www.lamission.edu/planning>

Los Angeles Mission College Library
13356 Eldridge Avenue
Sylmar, CA 91342

Los Angeles Public Library
Sunland-Tujunga Branch
7771 Foothill Boulevard
Tujunga, CA 91042

Los Angeles Public Library
Sylmar Branch
14561 Polk Street
Sylmar, CA 91342

Los Angeles Public Library
Mid-San Fernando Valley Branch
16244 Nordhoff Street
North Hills, CA 91343

Los Angeles Public Library
Pacoima Branch
13605 Van Nuys Boulevard
Pacoima, CA 91331
Written comments on this Draft EA are invited and should be transmitted during the public review period to ACOE:

Carvel Bass, Civil Works Branch
Asset Management Division
U.S. Army Corps of Engineers, Los Angeles District
915 Wilshire Boulevard, Suite 11098
Los Angeles CA 90017

7.5 Individuals and Agencies Consulted

The following individuals and agencies were consulted during the preparation of this Environmental Assessment (EA). A copy of the Notice of Availability for the EA was provided to each of these persons on or prior to September 3, 2009.

● Addressees, including the superscript +CD-ROM, were also sent copies of the Environmental Assessment on CD-ROM.

● Addressees, including the superscript +EA+CD-ROM, were also sent printed copies of the Environmental Assessment and on CD-ROM.

The Notice of Availability and Draft EA were also made available at: www.lamission.edu/planning.

7.5.1 Federal

United States Army Corps of Engineers (ACOE) +EA +CD-ROM
Ms. Katie Parks
Recreational Planner
Los Angeles District, Corps of Engineer
P.O. Box 532711
Los Angeles, CA 90053

United States Army Corps of Engineers (ACOE) +EA +CD-ROM
Mr. Carvel Bass
Ecologist
Los Angeles District, Corps of Engineer
P.O. Box 532711
Los Angeles, CA 90053

United States Fish and Wildlife Service Carlsbad Fish and Wildlife Office +CD-ROM
Mr. Ken Corey
6010 Hidden Valley Road, Suite 101
Carlsbad, CA 92011

United States Forest Service Angeles National Forest +CD-ROM
Justin Seastrand
Recreational Officer
701 N. Santa Anita Avenue
Arcadia, CA 91006
7.0 Coordination and Related Environmental Documentation

United States Forest Service Angeles National Forest +CD-ROM
 Ms. Jody Noiron
 Forest Supervisor
 701 N. Santa Anita Avenue
 Arcadia, CA 91006

United States Forest Service Los Angeles River Ranger District +CD-ROM
 Mr. Mike McIntyre
 District Ranger
 12371 N. Little Tujunga Canyon Road
 San Fernando, CA 91342

7.5.2 State

Los Angeles Community College District Office +EA +CD-ROM
 Mr. Larry Eisenberg
 Board of Trustees
 770 Wilshire Boulevard
 Los Angeles, CA 90017

Los Angeles Mission College Public Library +EA +CD-ROM
 Reference Desk
 13356 Eldridge Avenue
 Sylmar, CA 91342

Congressman Brad Sherman, 27th District, California +CD-ROM
 Mr. Michael Tou, Policy Deputy
 5000 Van Nuys Boulevard, Suite 420
 Sherman Oaks, CA 91403-1791

Department of Toxic Substances Control +CD-ROM
 Reuse Unit
 9211 Oakdale Avenue
 Chatsworth, CA 91311-6505

Division of Water Quality +CD-ROM
 State of CA Water Resources Control Board
 1001 I Street
 Sacramento, CA 95814

Native American Heritage Commission +CD-ROM
 Mr. David Singleton, Program Analyst
 915 Capitol Mall, Room 364
 Sacramento, CA 95814

Fernandeno/Tataviam Band of Mission Indians
 Fernandeno/Tataviam Tribal Government
 Mr. William Gonzales, Cultural/Environ Dept.
 601 S. Brand Boulevard, Suite 101
 San Fernando, CA 91340
San Fernando Band of Mission Indians
Mr. John Valenzuela, Chairperson
P.O. Box 221838
Newhall, CA 91322

Gabrieleno/Tongva Tribal Council
Mr. Anthony Morales, Chairperson
P.O. Box 693
San Gabriel, CA 91778

Gabrielino/Tongva Council/Gabrielino Tongva Nation
Mr. Sam Dunlap, Tribal Secretary
501 Santa Monica Boulevard, Suite 500
Santa Monica, CA 90401

LA City/County Native American Indian Commission
Mr. Ron Andrade, Director
3175 West 6th Street, Room 403
Los Angeles, CA 90020

Chumash Fernandeno Tataviam Kitanemuk
Mr. Charles Cooke
32835 Santiago Road
Acton, CA 93510

Chumash Fernandeno Tataviam Shoshone Paiute Yaqui
Mr. Randy Guzman, Folkes
4577 Alamo Street, Unit C
Simi Valley, CA 93063

Kitanemuk & Yowlumne Tejon Indians
Ms. Delia Dominguez
981 No. Virginia
Covina, CA 917225

Chumash Tataviam Fernandeno
Ms. Beverly Salazar Folkes
1931 Shadybrook Drive
Thousand Oaks, CA 91362

Tongva Ancestral Territorial Tribal Nation
Mr. John Tommy Rosas, Tribal Administrator
4712 Admiralty Way, Suite 172
Marina Del Rey, CA 90292

Gabrieleno Band of Mission Indians +CD-ROM
Mr. Andy Salas
P.O. Box 393
Covina, CA 91723

Governor's Office of Planning and Research (OPR) + CD-ROM
State Clearinghouse
1400 Tenth Street
Sacramento CA 95812-3044
7.0 Coordination and Related Environmental Documentation

California Department of Parks and Recreation +CD-ROM
Office of Historic Preservation
Mr. Wayne Donaldson
State Historic Preservation Officer
1416 9th Street, Rm. 1442-7
Sacramento, CA 95814

Caltrans (District 7) +CD-ROM
Office of Advance Planning
100 South Main Street
Los Angeles, CA 90012

California Regional Water Quality Control Board +CD-ROM
Los Angeles Region (Region 4)
Mr. David Bacharowski
320 West Fourth Street, Suite 200
Los Angeles, CA 90013

Department of Fish and Game +CD-ROM
South Coast Region
Ms. Morgan Wehtje
4949 Viewridge Avenue
San Diego, CA 92123

7.5.3 Regional

South Coast Air Quality Management District +CD-ROM
Dr. Steve Smith, Ph.D.
Program Supervisor, CEQA Section
Planning, Rule Development and Air Sources
21865 East Copley Drive
Diamond Bar, CA 91765-4182

South Coast Air Quality Management District +CD-ROM
Mike Krause, Air Quality Specialist
Planning, Rule Development and Air Sources
21865 East Copley Drive
Diamond Bar, CA 91765-4182

County Sanitation Districts of Los Angeles County +CD-ROM
Mr. James Stahl
1955 Workman Mill Road
Whittier, CA 90607

County of Los Angeles Metropolitan Transportation Authority +CD-ROM
Mr. Art Cuerto
1 Gateway Plaza
Mail Stop 99-22-29
Los Angeles, CA 90012-2952
7.0 Coordination and Related Environmental Documentation

Southern California Association of Governments +CD-ROM
 Mr. Mark A. Pisano
 818 West Seventh Street, 12th Floor
 Los Angeles, CA 90017

Los Angeles Unified School District +CD-ROM
 333 South Beaudry Avenue, 21st Floor
 Los Angeles, CA 90017

7.5.4 County

Office of the County Clerk – Environmental Filings +CD-ROM
 Ms. Conny B. McCormack
 12400 East Imperial Highway
 Second Floor, Room 2001
 Norwalk, CA 90650

County of Los Angeles Department of Public Works +CD-ROM
 Land Development Division
 Ms. Suk Chong
 P.O. Box 1460
 Alhambra, CA 91802-1460

Natural History Museum of Los Angeles County +CD-ROM
 Vertebrate Paleontology Section
 Dr. Samuel McLeod
 900 Exposition Boulevard
 Los Angeles, CA 90007

Los Angeles County Department of Public Works +CD-ROM
 Mr. John Burton, Civil Engineer, Dam Surveillance
 900 S. Fremont Avenue
 Alhambra, CA 91803

Los Angeles County Department of Public Works +CD-ROM
 Mr. Martin Araiza, P.E., Water Resources Division
 900 S. Fremont Avenue
 Alhambra, CA 91803

Office of Supervisor Zev Yaroslavsky, 3rd District +CD-ROM
 Ms. Lori Garcia Wheeler, Senior Field Deputy
 Van Nuys District Office
 14340 Sylvan Street
 Van Nuys, CA 91401
7.0 Coordination and Related Environmental Documentation

Los Angeles County Department of Regional Planning +CD-ROM
Jon Sanabria
Acting Director of Planning
320 West Temple Street, 13th Floor, Room 1390
Los Angeles, California 90012

7.5.5 City

Honorable Antonio Villaraigosa, Mayor +CD-ROM
City of Los Angeles City Hall
200 North Spring Street, Room 303
Los Angeles, CA 90012

Office of Mayor Antonio Villaraigosa +CD-ROM
Mr. Antonio Sanchez, Area Director
E. Valley Neighborhood & Community Services
14410 Sylvan Street, Room 211
Van Nuys, CA 91401

Office of Councilmember Richard Alarcon +CD-ROM
Mr. Dan Rosales, Supervisor-Planning Director
City of Los Angeles Council District 7
13517 Hubbard Street
Sylmar, CA 91342

City of Los Angeles Fire Station 91 +CD-ROM
Firefighter Susan Slates
14430 Polk Street
Sylmar, CA 91342

Foothill Transit +CD-ROM
100 North Barranca Avenue, Suite 100
West Covina, CA 91791-1600

City of Los Angeles Department of Transportation +CD-ROM
Mr. Sergio Valdez
Transportation Engineer
Valley Development Review Division
6262 Van Nuys Boulevard, Room 320
Van Nuys, CA 91401

City of Los Angeles Department of Transportation +CD-ROM
Mr. Vicente Cordero
Valley Development Review Division
6262 Van Nuys Boulevard, Room 320
Van Nuys, CA 91401

City of San Fernando Planning Department +CD-ROM
Mr. Fred Ramirez, Senior Planner
117 Macneil Street
San Fernando, CA 91340
7.0 Coordination and Related Environmental Documentation

City of Burbank Planning Department +CD-ROM
Ms. Joy Forbes, Planning Manager
275 East Olive Avenue
Burbank, CA 91502

City of Los Angeles Department of Water and Power +CD-ROM
Mr. Mark Sedlacek
111 North Hope Street
Los Angeles, CA 90012

City of Los Angeles Fire Department +CD-ROM
Mr. William Bamattre
Bureau of Fire Prevention and Public Safety
200 North Main Street
Los Angeles, CA 90012

City of Los Angeles Planning Department +CD-ROM
Ms. Emily V. Yilescas
Department of City Planning
6262 Van Nuys Boulevard, Suite 351
Van Nuys, CA 91401

7.5.6 Organizations

Los Angeles Audubon Society +CD-ROM
Mary Loquvam
Executive Director
P.O. Box 931057
Los Angeles, CA 90093

San Fernando Valley Audubon Society +CD-ROM
Jim Moore
President
P.O. Box 7769
Van Nuys, CA 91407

Sierra Club San Fernando Valley Group +CD-ROM
Sharon Ford
Conservation Chair
13028 Aetna Street
Valley Glen, CA 91401

7.5.7 Property Owner List
A complete Property Owner List may be obtained from the LAMC upon request.

7.5.8 Newspapers

San Fernando Valley Sun
601 South Brand Boulevard, Suite 202
San Fernando, CA 91340
7.6 Discretionary Actions and Permits

In addition to approval by ACOE, development by LAMC of athletic fields on ACOE Property would require approvals from the LACCD Board, the Division of the State Architect, the City of Los Angeles, the County of Los Angeles, and other public agencies for related aspects of the project. Table 7-2 Discretionary Actions and Permits provides a preliminary list of the discretionary actions required for the Proposed Action.

Table 7-2 Discretionary Actions and Permits

<table>
<thead>
<tr>
<th>Discretionary Action/Permit</th>
<th>Project Area</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athletic Fields: Soccer and Softball Support Facility</td>
<td>Athletic Fields</td>
<td>LACCD, DSA, ACOE</td>
</tr>
<tr>
<td>Athletic Fields: Baseball Support Facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreation Lease of ACOE Property for Athletic Field</td>
<td>Athletic Fields</td>
<td>ACOE</td>
</tr>
<tr>
<td>Zoning Exemption for Athletic Fields</td>
<td>Athletic Fields</td>
<td>LACCD</td>
</tr>
<tr>
<td>Grading and Drainage Permits for Athletic Fields</td>
<td>Athletic Fields</td>
<td>City of Los Angeles, ACOE</td>
</tr>
<tr>
<td>NPDES for Athletic Fields</td>
<td>Athletic Fields</td>
<td>RWQCB</td>
</tr>
<tr>
<td>Conditional Use Permit (Zoning/General Plan Consistency) for Athletic Fields</td>
<td>Athletic Fields</td>
<td>City of Los Angeles Department of City Planning</td>
</tr>
</tbody>
</table>

Note(s):

- The Los Angeles Community College District Board of Trustees may render a city's zoning ordinance inapplicable to the use of district property for classroom purposes (Government Code § 53094)
- DSA = California Department of General Services, Division of the State Architect
- RWQCB = Regional Water Quality Control Board

7.7 Responsible Agencies

Federal, state, regional, and local agencies that may have jurisdiction over the project include, but are not limited to:

- U.S. Army Corps of Engineers (ACOE)
- Federal Emergency Management Agency (FEMA)
- U.S. Fish and Wildlife Service (USFWS)
- California Department of General Services, Division of the State Architect (DSA)
- California Department of Fish and Game (CDFG)
- Regional Water Quality Control Board (RWQCB)
- South Coast Air Quality Management District (SCAQMD)
- Los Angeles County Flood Control District (LACFCD)
- City of Los Angeles*

*Dependent on if LACCD exempts the project from local land use jurisdiction.
7.8 Past, Present, and Reasonably Foreseeable Future Actions

According to NEPA, federal agencies are required to address whether a Proposed Action is “related to other actions with individually insignificant but cumulatively significant impacts.” An EA may conclude that although the individual effect of a Proposed Action is not significant, its cumulative effect when combined with other actions may cause a significant impact and thus require preparation of an EIS. Section 1508.7 of the NEPA Guidelines states:

Cumulative effect results from the Proposed Action's incremental impacts when these impacts are added to the impacts of other past, present, and reasonably foreseeable future actions, regardless of the agency or person who undertakes them. Cumulative effects can result from individually minor, but collectively significant actions that take place over time.

The ACOE, as part of its cumulative impact analysis, is required to identify:
- Areas in which the effects of the Proposed Action would be felt;
- The effects that are expected in those areas from the Proposed Action;
- Past, present, and reasonably foreseeable future actions that have or that are expected to have impacts in the same area;
- The impacts or expected impacts from these other actions; and
- The overall impacts that can be expected if the individual impacts are allowed to accumulate.

The cumulative impact analysis found under each resource area of Chapter 3 focuses on whether the impacts of the Proposed Action and its alternatives would be cumulatively considerable within the context of impacts causes by other past, present, or reasonably foreseeable future projects. Cumulative projects considered include planned developments in the area, projects being implemented under the LAMC 2007 Facilities Master Plan, and projects being proposed under the LAMC 2009 Master Plan.

7.8.1 Planned Developments in the Area

Projects in the area that may affect cumulative conditions are outlined in Table 7-3 Reasonably Foreseeable Future Projects and are shown on Figure 7-1 Reasonably Foreseeable Future Projects. Projects listed on Table 7-3 were obtained from the Los Angeles Department of Transportation in May of 2009 and include planned and expected projects within a 3.5-mile radius of the proposed project site.

77 Fritiofson v. Alexander, 772 F.2d 1225, 1245 [5th Cir. 1985]
7.0 Coordination and Related Environmental Documentation

Table 7-3 Reasonably Foreseeable Future Projects

<table>
<thead>
<tr>
<th>No.</th>
<th>Address</th>
<th>Project Title</th>
<th>Size</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13159 Wheeler Ave</td>
<td>VTT-60872</td>
<td>59</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>2</td>
<td>13140 Gladstone Av</td>
<td>Olson Sylmar Residential</td>
<td>69</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>3</td>
<td>13570 Hubbard St</td>
<td>Barry’s Chevron Car Wash</td>
<td>10</td>
<td>Bays</td>
</tr>
<tr>
<td>4</td>
<td>13551 Foothill Bl</td>
<td>Townhouses</td>
<td>95</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>5</td>
<td>13461 Foothill Bl</td>
<td>Condos</td>
<td>92</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>6</td>
<td>13441 Foothill Bl</td>
<td>LA Family Housing</td>
<td>NA</td>
<td>Mixed Use</td>
</tr>
<tr>
<td>7</td>
<td>13754 Foothill Bl</td>
<td>Sylmar Square</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>13160 Dransfield Av</td>
<td>Apartment building</td>
<td>96</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>9</td>
<td>13260 Maclay St</td>
<td>Maclay Street Apartments</td>
<td>141</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>10</td>
<td>14124 Foothill Bl</td>
<td>Medical Office</td>
<td>14381</td>
<td>Square Footage</td>
</tr>
<tr>
<td>11</td>
<td>13300 Maclay St</td>
<td>LAUSD Valley E.School #8</td>
<td>725</td>
<td>Seats</td>
</tr>
<tr>
<td>12</td>
<td>14400 Olive View Dr</td>
<td>Self-Storage Facility</td>
<td>234156</td>
<td>Square Footage</td>
</tr>
<tr>
<td>13</td>
<td>12804 Arroyo St</td>
<td>Foothill Charter School</td>
<td>1100</td>
<td>Students</td>
</tr>
<tr>
<td>14</td>
<td>14110 Hubbard St</td>
<td>Sylmar Shopping Center</td>
<td>20000</td>
<td>Square Footage</td>
</tr>
<tr>
<td>15</td>
<td>14113 Hubbard St</td>
<td>Commercial Center</td>
<td>42000</td>
<td>Square Footage</td>
</tr>
<tr>
<td>16</td>
<td>14580 Bledsoe St</td>
<td>LAUSD Valley Region Span School #1</td>
<td>1047</td>
<td>Students</td>
</tr>
<tr>
<td>17</td>
<td>14445 Olive View Dr</td>
<td>Olive View Medical Center ER Expansion</td>
<td>85</td>
<td>Beds</td>
</tr>
<tr>
<td>18</td>
<td>Arroyo Av & Borden St</td>
<td>LAUSD Valley High School #5</td>
<td>2160</td>
<td>Students</td>
</tr>
<tr>
<td>19</td>
<td>12700 Bradley Av</td>
<td>5 condo projects & 1 subdivision</td>
<td>67</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>20</td>
<td>13361 Glenoaks Bl</td>
<td>First Lutheran School</td>
<td>350</td>
<td>Students</td>
</tr>
<tr>
<td>21</td>
<td>12385 San Fernando Rd</td>
<td>Sylmar Village</td>
<td>NA</td>
<td>Mixed Use</td>
</tr>
<tr>
<td>22</td>
<td>12455 San Fernando Rd</td>
<td>Mixed Use Project</td>
<td>88</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>23</td>
<td>Downtown San Fernando</td>
<td>San Fernando Parking Lots Development Project</td>
<td>NA</td>
<td>Mixed Use</td>
</tr>
<tr>
<td>24</td>
<td>11887 Terra Vista Way</td>
<td>Condominiums</td>
<td>78</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>25</td>
<td>13571 Vaughn St</td>
<td>California Commercial Center</td>
<td>109900</td>
<td>Square Footage</td>
</tr>
<tr>
<td>26</td>
<td>12221 Pierce St</td>
<td>Single Family Homes</td>
<td>57</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>27</td>
<td>13500 Paxton St</td>
<td>Lowe’s Home Improvement</td>
<td>140000</td>
<td>Square Footage</td>
</tr>
<tr>
<td>28</td>
<td>13485 Herrick Av</td>
<td>Sylmar Residential Development</td>
<td>44</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>29</td>
<td>12535 Pierce St</td>
<td>Habitat for Humanity Condo Complex & Day Care</td>
<td>62</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>30</td>
<td>15065 Mission Hills Rd</td>
<td>Holy Cross Residential</td>
<td>113</td>
<td>Dwelling Unit</td>
</tr>
<tr>
<td>31</td>
<td>11500 Eldridge Av</td>
<td>Pacific Charter School</td>
<td>1000</td>
<td>Students</td>
</tr>
<tr>
<td>32</td>
<td>15900 Olden St</td>
<td>Voit Development - Olden Street Manufacturing</td>
<td>85665</td>
<td>Square Footage</td>
</tr>
<tr>
<td>33</td>
<td>13503 San Fernando Rd</td>
<td>Sylmar Industrial Project (option 2)</td>
<td>600000</td>
<td>Square Footage</td>
</tr>
</tbody>
</table>

Source: LADOT May 15, 2009. Note(s): List radius is 3.56 miles from 13356 Eldridge Avenue

Note:
NA = data not available

7.8.2 LAMC 2007 Facilities Master Plan

LACCD requires the preparation of facility master plans to support expansion of each of its nine colleges. In 2007 LACCD adopted the 2007 LAMC Facilities Master Plan, Mission College’s current campus master plan, in order to guide the orderly development of instructional and support facilities to accommodate increased LAMC enrollment projected through 2015. The 2007 Facilities Master Plan approved phased development on two campus areas, the Main Campus and the East Campus, some elements of which have not yet been completed. Development of the Athletic Fields along the Pacoima Wash, which are the subject of this EA, were not a part of the 2007 Facilities Master Plan.
Figure 7-1 Reasonably Foreseeable Future Projects
As of April 2009, the LAMC Main and East Campuses combined contain approximately 418,250 gsf of permanent building space. Table 7-4 Square Footage and Heights of Existing and Previously Approved LAMC Structures provides details of the existing structures with regard to building space, square footage and height. The Main Campus currently consists of a combination of eight (8) permanent buildings and structures and several temporary modular buildings. As approved in the 2007 Facilities Master Plan, the College plans to add the following four (4) permanent structures (which will eventually replace all temporary buildings) on the Main Campus: 1) A Family and Consumer Studies building (with Bookstore), 2) A Plant Facilities building with a Central Plant, 3) A Media Arts Center, and 4) A Student Services and Administration Building. The Family and Consumer Studies building (with Bookstore) is currently under construction at the north eastern side of the Main Campus. This building will consist of three levels; have a building footprint of approximately 25,000 gsf, and a building area of approximately 64,170 gsf. The construction of this building is expected to be completed in the spring of 2010.

Permanent buildings on the East Campus currently include a Health, Fitness, and Athletics building which is under construction and is expected to be completed in fall 2009. The Health, Fitness and Athletics building will have a footprint of 55,000 gsf, and a building area of 95,300 gsf.

Consistent with the approvals of the 2007 Facilities Master Plan, the College will construct three (3) additional permanent structures on the Main Campus. The Media Arts Center will be constructed between August 2009 and March 2011. The Plant Facilities with Central Plant will be constructed between January 2013 and June 2015 and the Student Services and Administration Building will be constructed between December 2011 and June 2013. The College plans to construct two (2) additional permanent structures on the East Campus: the Science and Math Technology Center and the East Campus Central Plant. These two buildings are planned to be constructed concurrently between December 2009 and 2011. Table 7-4 Square Footage and Heights of Existing and Previously Approved LAMC Structures (above) provides details of the structures approved by the 2007 Facilities Master Plan (which have not yet been completed) with regard to building space, square footage and height. Anticipated construction timelines for all structures approved under the 2007 Facilities Master Plan are shown by year and quarter in Table 7-5 Construction Schedule for Buildings Approved Under the 2007 Master Plan.

78 Includes temporary buildings. Three (3) off-site campus centers described in the 2007 Master Plan have been reconsolidated on the Main Campus.
Table 7-4 Square Footage and Heights of Existing and Previously Approved LAMC Structures

<table>
<thead>
<tr>
<th>Buildings & Structures</th>
<th>Gross Square Feet (gsf)</th>
<th>Approximate Building Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Buildings & Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library/Learning Resources Center</td>
<td>53,200</td>
<td>30</td>
</tr>
<tr>
<td>Instructional/Administration</td>
<td>77,400</td>
<td>47</td>
</tr>
<tr>
<td>Campus Center</td>
<td>36,650</td>
<td>43</td>
</tr>
<tr>
<td>Collaborative Studies</td>
<td>19,750</td>
<td>29</td>
</tr>
<tr>
<td>Campus Services</td>
<td>13,700</td>
<td>23</td>
</tr>
<tr>
<td>Center for Child Development Studies</td>
<td>32,000</td>
<td>32</td>
</tr>
<tr>
<td>Health Services Modular</td>
<td>480</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>233,180</td>
<td></td>
</tr>
<tr>
<td>Temporary Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Facilities Modulars</td>
<td>3,360</td>
<td>12</td>
</tr>
<tr>
<td>Media Arts Classroom Modulars</td>
<td>6,400</td>
<td>12</td>
</tr>
<tr>
<td>Math Classroom Modulars</td>
<td>9,600</td>
<td>12</td>
</tr>
<tr>
<td>Faculty Office Modulars</td>
<td>3,840</td>
<td>12</td>
</tr>
<tr>
<td>Campus Sheriff’s Modulars</td>
<td>1,920</td>
<td>12</td>
</tr>
<tr>
<td>Restroom Modulars</td>
<td>480</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>25,600</td>
<td></td>
</tr>
<tr>
<td>Buildings Under Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family & Consumer Studies with Bookstore</td>
<td>64,170</td>
<td>37</td>
</tr>
<tr>
<td>Total</td>
<td>64,170</td>
<td></td>
</tr>
<tr>
<td>East Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health, Fitness, & Athletics Building</td>
<td>95,300</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>95,300</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>418,250</td>
<td></td>
</tr>
<tr>
<td>Previously Approved Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media Arts Center</td>
<td>35,300</td>
<td>54</td>
</tr>
<tr>
<td>Student Services & Administration Building</td>
<td>55,000</td>
<td>50</td>
</tr>
<tr>
<td>Plant Facilities with Central Plant</td>
<td>26,000</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>116,300</td>
<td></td>
</tr>
<tr>
<td>East Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science & Math Technology Center</td>
<td>95,190</td>
<td>56</td>
</tr>
<tr>
<td>East Campus Central Plant</td>
<td>5,000</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>100,190</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>216,490</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>609,140</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- An additional permanent structure includes Parking Structure A which consists of 1,200 parking spaces.
- All gross square footages (GSF) are approximate.
- The construction of these facilities has been addressed in the 2007 Final Environmental Impact Report for Los Angeles Mission College Facilities Master Plan and therefore was not analyzed in the 2009 Facilities Master Plan EIR.
- Assumes removal and replacement of all Temporary Structures with permanent structures as identified under Previously Approved New Construction.
7.8.3 LAMC 2009 Facilities Master Plan

LAMC is proposing revisions to its 2007 Facilities Master Plan. The College’s 2009 Facilities Master Plan proposes to incorporate three new areas for development and improvement to supplement the constructability of previously approved facilities, further organize and consolidate college programs and accommodate the expansion of the College’s Health & Fitness programs. These areas which are shown on Figure 1-11 Proposed 2009 Facilities Master Plan, are identified as: the proposed Athletic Fields, the Hubbard Street Nursery Property, and Eldridge Avenue Streetscape Improvements. Table 7-5 2009 LAMC Master Plan Floor Areas, lists the square footages of previously approved and newly proposed facilities and related parking that proposed by the 2009 LAMC Facilities Master Plan. The table shows areas needed to meet the growth projected in the 2009 Facilities Master Plan.

Table 7-5 2009 LAMC Facilities Master Plan Floor Areas

<table>
<thead>
<tr>
<th>Buildings and Structures*</th>
<th>Floor Area GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Campus</td>
<td></td>
</tr>
<tr>
<td>Library/Learning Resources Center</td>
<td>53,200</td>
</tr>
<tr>
<td>Instructional/Administration</td>
<td>77,400</td>
</tr>
<tr>
<td>Campus Center</td>
<td>36,650</td>
</tr>
<tr>
<td>Collaborative Studies</td>
<td>19,750</td>
</tr>
<tr>
<td>Campus Services</td>
<td>13,700</td>
</tr>
<tr>
<td>Center for Child Development Studies</td>
<td>32,000</td>
</tr>
<tr>
<td>Media Arts Center</td>
<td>35,300</td>
</tr>
<tr>
<td>Student Services & Administration Building</td>
<td>55,000</td>
</tr>
<tr>
<td>Family & Consumer Studies with Bookstore</td>
<td>64,170</td>
</tr>
<tr>
<td>Plant Facilities with Central Plant</td>
<td>26,000</td>
</tr>
<tr>
<td>Health Services Modular</td>
<td>480</td>
</tr>
<tr>
<td>Subtotal</td>
<td>413,650</td>
</tr>
<tr>
<td>East Campus</td>
<td></td>
</tr>
<tr>
<td>Health, Fitness, and Athletics Building</td>
<td>95,300</td>
</tr>
<tr>
<td>Science & Math Technology Center</td>
<td>95,190</td>
</tr>
<tr>
<td>East Campus Central Plant</td>
<td>5,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>195,490</td>
</tr>
<tr>
<td>Total</td>
<td>609,140</td>
</tr>
<tr>
<td>Existing</td>
<td></td>
</tr>
<tr>
<td>Hubbard Street Nursery Property</td>
<td>20,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>20,000</td>
</tr>
<tr>
<td>Proposed</td>
<td></td>
</tr>
<tr>
<td>College Programs and Activities Center</td>
<td>20,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td>20,000</td>
</tr>
<tr>
<td>Athletic Fields</td>
<td></td>
</tr>
<tr>
<td>Softball and Soccer Fields Support Facility</td>
<td>1,100</td>
</tr>
<tr>
<td>Baseball Field Support Facility</td>
<td>1,100</td>
</tr>
<tr>
<td>Subtotal</td>
<td>2,200</td>
</tr>
<tr>
<td>Total</td>
<td>22,200</td>
</tr>
<tr>
<td>Total GSF Existing + Proposed</td>
<td>631,340</td>
</tr>
</tbody>
</table>

Source: LAMC Space Inventory, October 2008; Project Construction Contract Documents (Leo A. Daly, May 2009).

Note(s):

* An additional permanent structure includes Parking Structure A which consists of 1,200 parking spaces.

* All gross square footages [GSF] are approximate.
8.0 REFERENCES

8.1 Books Reports and Journals

8.0 References

CDFG (California Department of Fish and Game) and Western Field Ornithologists. 2008. California Bird Species of Special Concern: A Ranked Assessment of Species, Subspecies, and Distinct Populations of Birds of Immediate Conservation Concern in California. Camarillo, CA and Sacramento, CA: Western Field Ornithologists and California Department of Fish and Game.

CDFG. 2009. RareFind California Department of Fish and Game Natural Diversity Database (CNDDB). San Fernando USGS 7.5-Minute California Quadrangle. Sacramento, CA: California Department of Fish and Game, Biogeographic Data Branch.

CDMG. 1990. Mines and Mineral Producers Active in California. Contact: California Department of Conservation, Division of Mines and Geology, 801 K Street, MS 14-33, Sacramento, CA 95814-3531.

References

City of Los Angeles. Planning Department. 1994. General Plan Framework EIR, Figure GS-1–Areas Containing Significant Mineral Deposits in the City of Los Angeles. February 1994.

City of Los Angeles. 1999a. Appendix E, Inventory of Designated Scenic Highways, Transportation Element, General Plan of the City of Los Angeles.

City of Los Angeles. 2001. Chapter 2, Section 15, Land Form and Scenic Vistas, Conservation Element, General Plan of the City of Los Angeles.

CNPS (California Native Plant Society. 2009. CNPS Inventory of Rare and Endangered Plants for San Fernando USGS 7.5-Minute California Quadrangle: CNPS.

Dibblee, Thomas W. Jr., California Department of Conservation, Division of Mines and Geology; and U.S. Geological Survey. 1991. Geologic Map of the San Fernando and Van Nuys (North ½) Quadrangles, Los Angeles County, California. Published by: Dibblee Geological Foundation, P.O. Box 60560, Santa Barbara, CA 93160.

Gary J. Brennan, Commanding Officer, Community Affairs Group, City of Los Angeles Police Department. Fax/Letter dated February 5, 2003; cites 2000 Census data.

Jennings, C.W. 1994. Fault Activity Map of California and Adjacent Areas, with Locations and Ages of Recent Volcanic Eruptions. California Department of Conservation, Division of Mines
and Geology, Geologic Data Map Series, Map No. 6- Faults, Locations of Recent Volcanic Eruptions, Scale 1:750,000.

References

Martin Araiza, County of Los Angeles Department of Public Works. Telephone and email discussions, May 6 and 7, 2009.
8.0 References

Mesquite Regional Landfill Website. 2009. Available at: http://www.mrlf.org/

OPR (Governor’s Office of Planning and Research). 2008. CEQA and Climate Change: Addressing Climate Change through California Environmental Quality Act (CEQA) Review.

USGS (U.S. Geologic Survey).1977. 7.5-Minute Quadrangle Map San Fernando, California: USGS.

8.2 Personal Communications

Darby, Donald. Captain, City of Los Angeles Fire Department Fire Station 91. Personal communication on May 21, 2009.

Espy, Trey. Captain, County of Los Angeles Fire Department Station 74. Personal communication on May 20, 2009.

Hime, Ray. Captain, City of Los Angeles Fire Department Fire Station 75. Personal communication on May 20, 2009.

Murphy, Laura. Officer, Los Angeles County Sheriff’s Department. Personal communication on May 22, 2009.

Prosser, Daryl. Captain, City of Los Angeles Fire Department Fire Station 77. Personal communication on May 21, 2009.

White, Craig. Captain, City of Los Angeles Fire Department Station 98. Personal communication on May 20, 2009.

Yllescas, Emily. City Planner, City of Los Angeles Sylmar Community Plan Update. Personal communication on June 4, 2009.

8.3 Codes and Regulations

California Code of Regulations, Title 23, Section 2524.

California Code of Regulations, Title 24, Division 6, Chapter 3, Sections 15000-15387. Available at: http://ceres.ca.gov/topic/env_law/ceqa/guidelines/

California Integrated Waste Management Board, Ordinances, Resolutions, and Policies. Available at: http://www.ciwmb.ca.gov/lglibrary/LocalDocs/Policy.htm

California State Senate. Available at: http://info.sen.ca.gov/pub/07-08/bill/sen/sb_1401-1450/sb_1405_bill_20080619_amended_asm_v94.html

California Water Resources Control Board Fact Sheet for Water Quality Order 99-08-DWQ: National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction Activity (General Permit).

SCAG. 2001. SCAG Growth Management Chapter (GMC) Policy No. 3.21. Contact: 818 West Seventh Street, 12th Floor, Los Angeles, CA 90017-3435.

State of California. California Penal Code, Section 622.5. Available at: http://www.leginfo.ca.gov/calaw.html

State of California. California Public Resources Code, Section 5097.5. Available at: http://www.leginfo.ca.gov/cgi-in/waisgate?WAISdocID=60334228069+12+0+0&WAISSaction=retrieve

State of California. 2004. CEQA Guidelines Sections 15042–15043 and 15126.6(a) and (c) 2.

SWRCB (State Water Resources Control Board). Order No. 99-08–DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit NO. CAS000002 Waste Discharge Requirements (WDRS) for Discharges of Storm Water Runoff Associated with Construction Activity.
APPENDIX A BIOLOGICAL RESOURCES DATA AND REPORTS

Biological Resources Supporting Data and Technical Reports

Table of Contents

Biological Resources – Supporting Data
A-1: Plant Species Observed Within the Study Area
A-2: Wildlife Species Observed Within the Study Area
A-3: Special-Status Plant Species and Their Potential for Occurrence within the Study Area
A-4: Special-Status Wildlife Species and Their Potential for Occurrence within the Study Area

Biological Resources – Technical Reports
APPENDIX B CULTURAL RESOURCES ASSESSMENT

Cultural Resources Assessment

Confidential not available for public distribution
Proposed Project

The Proposed Action includes the lease of ACOE land adjacent to LAMC, in order to develop outdoor athletic facilities (men’s baseball field, women’s softball field, and men’s/women’s soccer field) to meet student/student athlete needs for dedicated athletic fields. These facilities will be open to all students individually as well as organized LAMC athletic teams. The proposed development of athletic facilities on ACOE land would help meet LAMC’s growing health, fitness, and athletic program’s unmet need for outdoor fields for both educational purposes and athletic competition by its students.

Current and Projected Market Conditions

The LAMC men’s baseball and women’s softball teams currently practice and play games at El Cariso Park, located adjacent to the college. The college pays an hourly fee ($14/hr) for both practices and games, as well as for various upgrades to the facilities (approximately $20,000 per year) to meet intercollegiate standards. Demand for use of the Athletic Fields at El Cariso Park have increased dramatically over the past several years and is expected to continue to increase as more schools are built. This facility is used on a daily/nightly basis by other schools and various adult leagues (usually 6-7 days/nights per week). These schools and leagues pay approximately $21 per hour to use County fields (LAMC pays $14/hr, but pays for maintenance/upgrade costs).

Local soccer facilities are scarce within the area surrounding LAMC, which creates competition for use of these fields. The LAMC men’s and women’s soccer teams have practiced and played games at Birmingham High School for the past seven years, which is located approximately 15 miles from the LAMC campus, and was the nearest available suitable facility. The college’s soccer teams plan to practice and play games at the Hansen Dam soccer complex for the 2009 season, which is located 4 miles from LAMC, but is a heavily used facility and is not ideal for intercollegiate competition. For the use of this facility, the college will pay a rental fee of $31 per hour (more than $10,000 annually) for both practices and games.

Demand at all local County facilities has increased dramatically over the past 2-3 years and is expected to continue to increase with the development of new schools and an increase in local population. This increased demand will lead to increasing rental charges by the County in order to maximize profits at these facilities and control demand.

Proposed Services, Pricing and Resulting Demand

LAMC currently faces strong competition from local schools and leagues for the use of County facilities within the surrounding area. The college pays an hourly fee, as noted above, to rent these facilities as well as for maintenance and upgrades (approximately $20,000 per year) in order to provide the best possible playing fields to its teams and the teams it competes against.

79 Personal communication with LAMC Athletic Director, June 22, 2009
80 Personal communication with LAMC Athletic Director, June 22, 2009.
81 Personal communication with LAMC Athletic Director, June 2009
On-campus facilities will not only benefit athletic teams by providing high quality fields that meet intercollegiate standards, but will provide safe and direct access for students and the community travelling between LAMC educational buildings and the Athletic Fields. These facilities will be open to all students, individually, and as organized teams, when available. This will help to provide relief at other County facilities and allow students to participate in discretionary activities on-campus. It is assumed that 80% of available time will be used by students participating in physical education and fitness courses, and 20% by other LAMC students.82 With increased availability at County facilities, discretionary activities by other local community members can become a real possibility. Currently, the need for these discretionary activities is unmet due to such high demand by other paying, organized teams.

As a result of the development of the proposed facilities, local demand for County fields would be reduced as LAMC athletic teams will no longer be using these facilities. This will result in opportunities for other local schools/leagues to use these County facilities as needed, therefore lowering demand at other County facilities.

On-campus athletic facilities will provide an environment for all students to participate in courses which may satisfy requirements of 4-year colleges for physical education courses that may be required as a part of a Physical Education and/or Fitness degree. These on-campus facilities would provide students adequate facilities in order participate in various courses, which are included in the 17-unit Physical Education certification program offered at the college.

82 Personal communication with LAMC Athletic Director, June 22, 2009
APPENDIX D FEASIBILITY STUDY

Introduction

The discussion below analyses the feasibility of the proposed project in terms of the current costs to LAMC and its students compared to the benefits that would be provided to both LAMC and its students with the development of on-campus dedicated athletic facilities. These benefits could include quality of service, convenience to students, and financial benefits (including reduction in costs) to both students and the college.

The Proposed Action includes the lease of ACOE land adjacent to LAMC, in order to develop outdoor athletic facilities (men’s baseball field, women’s softball field, and men’s/women’s soccer field) to meet student/student athlete needs for dedicated athletic fields. These facilities will be open to all students individually as well as organized LAMC athletic teams.

Other Vacant Parcels Available for Development

As shown in Figure D-1, available vacant land that could support the proposed facilities is scarce within a 10 mile radius. There are two such parcels within a 10-mile radius of LAMC that could support the proposed facilities (at least 14-acres in size). The first property (The Maclay Rancho) is located 5-miles west of the college, just east of the SR-14/I-5 interchange. This property is 14.2-acres and has an assessed value of $1,142,226 or $80,438 per acre. The second property (Rancho San Fran Hiking Riding Trail) is located approximately 6-miles northwest of LAMC, just north of SR-14. This property is 14.7-acres and has an assessed value of $1,456,233 or $99,063 per acre. With that being said, the cost of purchasing these parcels could be greater than the assessed value as this value is only calculated for tax purposes and may not reflect current market value.

Current Costs

LAMC currently uses athletic fields at El Cariso Park for its men’s baseball and women’s softball teams. The college pays this rental fee to the County ($14/hr) for every hour that its athletic teams are on the field for both practice and games. These rental fees cost the college approximately $10,000 annually. In addition to rental fees, LAMC has paid for various improvements to the athletic facilities at El Cariso Park in order to meet intercollegiate standards. Depending on the nature of the improvements at El Cariso Park, the improvements/upgrades cost the college approximately $20,000 annually. Some of these fees associated with improving the facilities have been assessed against the rental charges paid by the college. In addition to the monetary contributions towards improving the facilities at El Cariso Park, the college spends time and effort maintaining and improving the fields to provide the best possible playing conditions.

Students participating on the LAMC men’s and women’s soccer teams travel to practice and games using personal vehicles. The facilities used by LAMC soccer teams over the past seven years are located approximately 15 miles from the LAMC campus at Birmingham High School. The estimated cost of travel for each student is approximately $8.76 one way (15 miles x $0.585/mile). Travel time for students is estimated to be approximately 30 minutes each way (15 miles at 30mph).

83 Personal communication with LAMC Athletic Director, June 2009
For the 2009 season the LAMC soccer teams will compete at Hansen Dam Soccer Complex, which is a heavily used facility, and not suited for intercollegiate competition. The number of available local soccer facilities is scarce and therefore there is considerable competition for the use of these fields. The college rents soccer facilities at Hansen Dam Soccer Complex at a rate of $31 per hour, with an annual cost exceeding $10,000.84 Assuming 20 student and staff trips per game, 25 soccer games per year, a standard federal rate of $0.585 per mile, and a round trip distance saved of 8 miles, the total annual savings in travel costs would be $2,340 not including the savings in trips by family members and other participants. In addition to these costs, travel time to and from Hansen Dam soccer complex is expected to be 16 minutes round trip (8 miles at 30mph).

Costs Associated with Proposed Action

The costs associated with the Proposed Action include the cost of leasing the ACOE land, costs associated with the construction of the recreational facilities, and regular maintenance costs. Construction of the proposed facilities is expected to cost the college approximately $10 million.85 Maintenance costs associated with the Proposed Action are expected to be considerably less than the current amount of $20,000 annually, as explained below.

Reduced Costs to LAMC/Students

The Proposed Action will allow the college to develop outdoor athletic facilities on-campus and therefore eliminate the need to rent County facilities for its baseball, softball, and soccer teams’ practices and games. On-campus facilities would also reduce costs related to upgrades and improvements (approximately $20,000 annually) currently paid for at County facilities which are used by other organized teams approximately 6-7 days/nights per week. As a result of dedicated on-campus athletic facilities to be used by LAMC students only, the amount of usage and therefore required maintenance would be considerably less than current conditions at County facilities. This would result in reduced maintenance costs and time spent performing these maintenance activities. These facilities will also assist LAMC in attracting prospective students to their physical education/fitness programs as well as LAMC athletic teams, therefore increasing revenue generated by enrollment. At a cost of $20 per unit and 17 units for a physical instruction certificate, each increase of 100 students due to the new facilities would add $34,000 to LAMC’s revenue. With the new facilities, the program is likely to attract several times this number of interested participants including student athletes.

The Proposed Action would provide students with safe and direct access between educational buildings and the proposed athletic fields, therefore reducing travel time and eliminating travel costs associated with using outside County facilities. The Proposed Action would provide quality athletic facilities, for practice and games, which meet intercollegiate standards while improving the overall collegiate experience for students. Thus, the Proposed Action would be feasible and beneficial to the College from an economic perspective.

84 Personal communication with LAMC Athletic Director. June 2009
85 Personal communication with LAMC Athletic Director. June 22, 2009.
Figure D-1
Blank Page for Back of Figure
APPENDIX E CLEAN WATER ACT SECTION 404 PERMIT – SUPPORTING ANALYSIS FOR BANK STABILIZATION

Introduction

Los Angeles Mission College (LAMC) proposes to stabilize portions of the western bank of the Pacoima Wash between Harding Street and a point near the southern extent of the Sylmar Independent Baseball League (SIBL) ballfields parcel (see Figure E-1). Portions of the bank that are proposed to be stabilized are located within the ordinary high water mark that delineates waters of the United States (US). Areas within the waters of the US are under the jurisdiction of the U.S. Army Corps of Engineers (ACOE). Under Section 404 of the Federal Water Pollution Control Act Amendments for 1972 (P.L. 92-500; 33 U.S.C. 1344, amended by the Clean Water Act of 1977 (P.L. 95-217; 33 U.S.C. 1251 et seq.; hereafter “CWA”), anyone who proposes an activity that would discharge dredged or fill material into waters of the US is required to apply for a permit from the ACOE before the activity can proceed. Alteration to a streambed in California also requires prior approval by the California Department of Fish and Game (CDFG).

Proposed Action

LAMC requests the ACOE to issue a permit under Section 404 of the CWA for the purpose of bank stabilization. The ACOE can authorize activities by a standard individual permit, letter-of-permission, nationwide permit, or regional permit. The Corps will make the determination on what type of permit is needed.

ACOE’s Nationwide Permit 13 Bank Stabilization is an example of a nationwide permit that is applicable to this proposed action. This nationwide permit applies to bank stabilization activities necessary for erosion prevention, provided the activity meets all of the following criteria:

(a) No material is placed in excess of the minimum needed for erosion protection.
(b) The activity is no more than 500 feet in length along the bank, unless this criterion is waived in writing by the district engineer;
(c) The activity will not exceed an average of one cubic yard per running foot placed along the bank below the plane of the ordinary high water mark or the high tide line, unless this criterion is waived in writing by the district engineer;
(d) The activity does not involve discharges of dredged or fill material into special aquatic sites, unless this criterion is waived in writing by the district engineer;
(e) No material is of the type, or is placed in any location, or in any manner, to impair surface water flow into or out of any water of the United States;
(f) No material is placed in a manner that will be eroded by normal or expected high flows (properly anchored trees and treetops may be used in low energy areas); and,
(g) The activity is not a stream channelization activity.
Appendix E Clean Water Act Section 404 Permit – Supporting Analysis for Bank Stabilization

Nationwide Permit 13 also requires the permittee to submit a pre-construction notification to the district engineer prior to commencing activity if the bank stabilization activity:

(1) involves discharges into special aquatic sites;
(2) is in excess of 500 feet in length; or
(3) will involve the discharge of greater than an average of one cubic yard per running foot along the bank below the plane of the ordinary high water mark or the high tide line.

This appendix provides information to support the ACOE in its review of the Section 404 permit, including the applicability of the appropriate Nationwide Permit. It also provides information to other regulatory agencies with whom the ACOE will consult, including the US Fish and Wildlife Service, to support permits that may be issued by these agencies.

Project Purpose and Need

The primary purpose of the bank protection is to protect the roadway that connects Harding Street to properties owned by the ACOE, the Los Angeles Community College (LACCD), and the Sylmar Independent Baseball League (SIBL) (see Figure E-1). This roadway runs along the eastern edge of these properties.

In early January 2005, two segments of the roadway eroded away due to the winter’s heavy rains. One washout, the “South Washout,” occurred near Harding Street. The other, the “North Washout,” occurred further north along the roadway at the confluence of the tributary drainage from the golf course (from the northwest) and the Pacoima Wash (see Figure E-2 North and South Washouts), which is the location that divides the ACOE and LACCD properties. Shortly after the washouts occurred, a temporary roadway was constructed west of the original roadway to allow access to the SIBL fields. According to a geotechnical study that was prepared regarding this event, the two washouts consisted solely of erosion of the access road embankment attributed to the large quantities of fast-moving water in the Pacoima Wash. The large, swift flows scoured out the two segments. There was no visible evidence of bank instability resulting from slope instability or rapid drawdown failures. The South Washout appeared to be due to a combination of inadequate embankment armoring and a westward bend in the wash that directed flows into the embankment. Although the North Washout area was protected on its west bank by a concrete surface, the surface appeared to be undermined below the surface.

Stabilization of the bank in its original condition is necessary in order to ensure safe access along the access roadway. Stabilization is also needed to protect the proposed development of the ACOE and LACCD parcels for use by LAMC as athletic fields. The improvement of these parcels are needed in order to develop outdoor athletic facilities (men’s baseball field, women’s softball field, and men’s/women’s soccer field) to meet student/student athlete needs for dedicated athletic fields. These facilities are needed by all LAMC students individually as well by LAMC’s organized athletic teams.
Figure E-1 CWA AND CDFG Preliminary Jurisdictional Determination
Blank Page for Back of Figure
Figure E-2 North and South Washouts
Blank Page for Back of Figure
Appendix E Clean Water Act Section 404 Permit – Supporting Analysis for Bank Stabilization

Project Description

Scope of Temporary Impacts

Two segments of the bank require stabilization. The northerly segment extends from the SIBL parcel to the northern edge of the culvert that drains runoff from the Los Angeles County El Cariso Golf Course. The southern segment extends from the southern edge of this culvert to a point near Harding Street. The culvert itself would not be affected, nor would any portions of the riparian area be affected, which is located west of the culvert on the opposite side of the culvert from the bank. In both segments, the bank would be stabilized in its original condition; therefore, the net amount of fill placed into jurisdictional waters of the US would be zero.

Construction Schedule

To protect the bank, 500-pound rock is proposed to be placed along the bank slope. Between the base of the wash and the ordinary high water mark, approximately 1,000 cubic yards of bank material would be removed and replaced with the equivalent amount of rock. About 2,400 cubic yards of rock also needs to be placed below the base elevation of the wash so the slope would not be undercut by future erosion. To place this rock below the wash elevation, about 8,400 cubic yards of material at the toe of the slope would be excavated and stored on site. Of this material, 2,400 cubic yards would be used as fill for the Athletic Fields, and the remaining 6,000 cubic yards would be replaced after the rock is placed. Because the amount of material placed along the bank would equal the amount of material removed, the bank stabilization program is expected to have a net zero affect on the Pacoima Wash volumes, slopes, or elevations.

The length of bank affected by the bank stabilization above the ordinary high water mark would be about 85 feet along the ACOE Property, and about 400 feet along the LACCD Property, for a total of 485 feet.

Construction would require no more than 5 truck trips per hour carrying an average of 15 to 17 cubic yards of soil per truck. Trucks would be limited to operation between 9:30 a.m. and 3:30 p.m. each day. Field crews, inspectors, and excavation and placement activities on site would occur during daylight hours; normally from 7 a.m. to 4 p.m. Approximately 40 to 50 construction workers would be working on site per day. Construction of the bank stabilization is expected to commence in January 2010 and end September 2010. Strict compliance with resource avoidance and monitoring would be employed during all phases of project construction.

Typical Project Construction Scenario and Equipment Inventory

The anticipated order of construction of the bank would proceed from north to south. Activities would occur as follows: 1) placement of features to protect waters of the US and protected species, 2) excavation and material removal 3) placement of rock fill, and 4) site cleanup and demobilization. Prior to the start of construction, the construction site would be clearly defined with construction limit fencing and staking. In particular, the riparian area would be clearly fenced, and notices placed to avoid impacts to this area, and to avoid impeding discharge of the drainage to the Pacoima Wash. Best Management Practices would be implemented to protect the Pacoima Wash from being affected by siltation and runoff from construction activities. During construction, typical construction equipment would include excavators, backhoes, skip loaders, dump trucks, bottom dumps, bob cats, cranes, pick-up trucks, delivery vehicles, and assorted power operated hand tools.
Appendix E Clean Water Act Section 404 Permit – Supporting Analysis for Bank Stabilization

Construction Staging

Construction staging would take place within the LACCD and ACOE properties, and outside of the waters of the U.S. Examples of staging areas that may be used by the contractor are shown in Figure E-1.

Parking Areas during Construction

Construction workers would be expected to park on-site or along Harding Street adjacent to the site. They would not use street parking within the adjacent residential streets or parking at the El Cariso Regional Park and Golf Course.

Statewide General Construction Activity Storm Water Permit

As required by the State Water Resources Control Board, the proposed project will have to comply with the SWRCB General Construction Activity Storm Water Permit (NPDES No. CAS000002, Order No. 99-08-DWQ) (General Construction Permit) for all construction activities. The General Construction Permit requires the preparation and approval of a SWPPP for the bank stabilization construction phase. The SWPPP would minimize impacts to water quality or discharge flows from project construction. Applicable Best Management Practices (BMPs) that are included within the SWPPP would contain and manage project pollutant discharges, from both sediment and non-sediment pollutant sources, during all construction activities and rain events during the construction phase.

The Basin Plan and requisite BMPs will be incorporated into the project to address the potential impacts associated with the use of construction equipment within special aquatic resource areas. The implementation of these standard procedures will ensure that water quality standards are maintained. Nonetheless, it is possible that activities associated with the proposed Project may result in inadvertent debris, material and/or sediment discharges into the Pacoima Wash. In order to ensure that potential water quality impacts are reduced or eliminated, care will be taken to capture any debris that may fall into Pacoima Wash when construction activities are conducted. Furthermore, upstream and downstream hydrologic connectivity will remain constant while bank stabilization work is completed.

The following additional means of avoiding and minimizing adverse impacts to waters of the US will be implemented by LAMC during construction:

- In order to comply with the Migratory Bird Treaty Act (MBTA), and relevant sections of the California Fish and Game Code (e.g., 3503, 3503.4, 3504, 3505, etc.), any vegetation clearing within Pacoima Wash will take place outside of the typical avian nesting season (i.e., March 1 to June 30); to the maximum extent practical. Prior to ground-disturbing activities within Pacoima Wash, a qualified biologist will conduct and submit a pre-construction migratory nesting bird, and other raptors survey report. The survey shall occur not more than 72 hours prior to initiation of Project activities within Pacoima Wash and any occupied passerines and/or raptor nests occurring within or adjacent to the Project will be delineated. To the maximum extent practicable, a minimum buffer zone from occupied nests will be maintained during physical ground-disturbing activities. Once nesting has been determined to cease, the buffer may be removed.
• Limits of construction activities within Pacoima Wash will be clearly delineated so that no vegetation outside the demarcated Project limits will be disturbed by construction personnel or equipment.

• The footprint of disturbance shall be minimized to the maximum extent feasible. Access to Pacoima Wash shall be via pre-existing access routes to the greatest extent possible.

• To avoid attracting predators and nuisance species, Pacoima Wash shall be clear of debris, where possible. All food-related trash items shall be enclosed in sealed containers and regularly removed from Pacoima Wash.

• LAMC will develop and implement an environmental education program for employees and contractors working in the field.

• LAMC will implement invasive weed control measures.

• Fill length, width, and height dimensions shall not exceed those of the provided design.

• Fill shall be limited to the minimal amount necessary to accomplish the agreed activities.

• Permanent spoil storage sites shall not be located within Pacoima Wash where spoil can be washed back into the stream channel, or where it will cover aquatic or riparian vegetation.

• Structures and associated materials not designed to withstand high water flows shall be moved to areas above high water before such flows occur.

• Any materials placed in seasonally dry portions of Pacoima Wash that could be washed downstream or could be deleterious to aquatic life shall be removed from the project area prior to inundation by high flows.

• If vacuum trucks are used to clean up any contamination, the vacuum hose shall be placed in a 3 to 4 square foot area, protected on all sides by exclusionary fencing to prevent the uptake of any aquatic life.

• No debris, soil, silt, sand, bark, slash, sawdust, rubbish, construction waste, cement or concrete or washings thereof, asphalt, paint, oil or other petroleum products or any other substances which could be hazardous to aquatic life, or other organic or earthen material from any construction, or other associated project related activity shall be allowed to intentionally contaminate the soil and/or enter into or placed where it may be washed by rainfall or runoff into, Waters of the United States. Any of these materials, placed within or where they may enter the Pacoima Wash, by LAMC or any party working under contract, or with the permission of the LAMC, shall be removed immediately. When operations are completed, any excess materials or debris shall be removed from the work area. No rubbish shall be deposited within 100 feet of the high water mark of the Pacoima Wash.

• LAMC shall comply with all litter and pollution laws. All contractors, subcontractors and employees shall also obey these laws.

• Any equipment or vehicles driven and/or operated adjacent to the Pacoima Wash shall be checked and maintained daily, to prevent leaks of materials that if introduced to water could be deleterious to aquatic life.

• Stationary equipment such as motors, pumps, generators, and welders, located within or adjacent to the Pacoima Wash shall be positioned over drip pans. Stationary heavy equipment shall have suitable containment to handle a catastrophic spill/leak. Clean up
equipment such as extra boom, absorbent pads, skimmers, shall be on site prior to the start of dredging.

- No equipment maintenance shall be done within or near the Pacoima Wash margins where petroleum products or other pollutants from the equipment may enter these areas under any flow.

- Precautions to minimize turbidity/siltation have been taken into account during project planning and shall be installed prior to construction. Precautions include placement of silt fencing, straw bales, sand bags, and/or the construction of silt catchment basins, so that silt or other deleterious materials are not allowed to pass to downstream reaches of Pacoima Wash. The method used to prevent siltation shall be monitored and cleaned/repaired weekly.

- Flow diversions shall be done in a manner that shall prevent pollution and/or siltation and which shall provide flows to downstream reaches Pacoima Wash. Flows to downstream reaches shall be provided during all times that the natural flow would have supported aquatic life. Said flows shall be sufficient quality and quantity to support wildlife both above and below the diversion. Normal flows shall be restored to the affected stream immediately upon completion of work at that location.

- Temporary fills shall be constructed of non-erodible materials and shall be removed immediately upon work completion.

- Water containing mud, silt, or other pollutants from equipment washing or other activities, shall not be allowed to enter Pacoima Wash or placed in locations that may be subjected to high storm flows.

- Cement, rock and concrete shall not be poured/placed within the Pacoima Wash during the rainy season. The Operator shall monitor the 5-day forecast; cement, rock or concrete materials may be poured only if a 5-day clear window is predicted. Cement rock or concrete materials shall not be poured or placed in or near a flowing stream, to reduce the potential for significant adverse impacts to the stream, water, or biota.

With the execution of the measures detailed above, the Project would not adversely impact waters of the US. Furthermore, there are no known pollutants that are associated with this Project, nor are there any long-term water quality impacts on receiving waters and downstream waters. Short-term water quality impacts to receiving water bodies may include insignificant amounts of turbidity associated with sandbag/cofferdam installation during construction.

General Permit for Discharge of Storm Water from Small Municipal Separate Storm System

Phase II NPDES regulations for Small Municipal Separate Storm System (MS4s), with populations of 100,000 or less and construction sites disturbing between one and five acres of land not covered under the Phase I regulations, were promulgated by the USEPA on December 8, 1999. NPDES federal regulations allowed two permitting options: individual permits and general permits. On February 4, 2003, the SWRCB adopted a general permit for the Discharge of Storm Water from Small MS4s. LAMC has been designated as only a potential Non-Traditional Small MS4 under the Phase II Permit. Therefore, LAMC is not currently subject to the terms and conditions associated with this permit. It is expected that in the next few years, the LARWQCB will be developing a watershed-based NPDES permit for small nontraditional MS4s such as LAMC. Under this permit, LAMC will be required to implement BMPs associated with the following storm-water
pollution prevention control measures: 1) Public Education; 2) Construction Site Storm-water Runoff Control; 3) Post-construction Storm-water Management; and 4) Pollution Prevention/Good Housekeeping.

During operation, the stabilized bank is not expected to cause impacts to water quality or discharge flows, once the regional water quality design requirements are met. There would be minimal alternations of existing natural drainage patterns. Bank management design, including planting of native vegetation, is an example of a BMP that will promote sediment load reduction in stormwater runoff.

Alternatives Considered to Avoid Impacts to Waters of the US

To avoid waters of the U.S., the bank stabilization portion of the project would need to be deleted. Without the stabilized bank, the site’s access road could not be located along the eastern side of the site. Therefore, alternative concepts were evaluated that involve relocating the road to the western side of the site (see Figures E-3 through E-5). Three conceptual designs were considered for this alternative. None of these options were found to be feasible for the reasons described below.

Alternative 1 – New Access from Harding Street

This alternative would provide access to the site from a new exit off Harding Street (Figure E-3 Alternative 1). It would eliminate the proposed revetment, and would relocate the existing access road to run along the west property line. Pedestrian access would be provided to the parking lot on the south side of the fields and pedestrians would use the existing culvert to travel back and forth between the two sites. This alternative would be infeasible because without the revetment the athletic fields would be subject to scour in the event of a major storm. Loss of the athletic fields would not meet the Project purpose and need. Furthermore, the Harding Street access point would involve unsafe ingress and egress turning movements in the middle of a curve in the steep grade of Harding Street. There would also be a substantial elevation drop from Harding Street into the Project site providing unacceptable sight lines for ingress to and egress from the property. This alternative would involve the development of a bridge over the vegetated drainage to maintain existing vehicular access to the LACCD property and the athletic fields there. The new bridge would traverse an area that is known to be occupied by Least Bells Vireo. The new bridge would cause a take of the endangered species habitat and create more serious environmental effects than the proposed Project. In this option, the road would terminate in a parking lot serving the North Athletic Fields and would not be extended into the Sylmar Independent Baseball League baseball fields because there would be insufficient room to place the road without bank stabilization. Loss of existing access to the SIBL fields would be unacceptable to SIBL.

Alternative 2 – New Access from Maclay Avenue

This alternative would provide access to the site from a point north of the intersection of Harding Street at Maclay Avenue (Figure E-4 Alternative 2). It would also eliminate the proposed revetment, relocate the existing access road to run along the west property line, create a new bridge over the riparian area, and provide pedestrian access as under Alternative 1. This alternative would run the access road all the way to the northwestern edge of the northern parcel, and then turn east to connect to the existing access road serving an existing parking lot for the SIBL baseball fields. This alternative would be infeasible for reasons similar to Alternative 1, and would have similar impacts on endangered species. An immediate hard turning movement would be required down a steep grade from Maclay Avenue to the access road. Since the road would extend through a parking lot serving the ACOE Property, safety would be a greater concern at this location.
Alternative 3 – Existing Access from Maclay Street

This alternative would provide access to the site from the existing access point (Figure E-5 Alternative 3). This alternative would eliminate the proposed revetment, would continue to provide access using the existing SIBL road access point, and would be able to relocate only portions of the existing access road away from the Pacoima Wash. The road would serve a new parking lot on the North Athletic Fields via a right turn but would continue north to connect to an existing parking lot serving the existing SIBL baseball fields. This alternative would provide safer access with better site lines for ingress and egress than Alternative 1. However, an immediate hard turning movement would be required down a steep grade to align the road along the southern property line until it would turn north along the western property line. As with the other alternatives, this option would involve the development of a bridge over the vegetated drainage, would affect endangered species, and would create more serious environmental effects than the proposed Project. The extension of the access road along the western boundary to connect the SIBL parking lot would result in the loss of one existing SIBL baseball field. Loss of this SIBL field would be unacceptable.

Summary

Alternatives that would avoid bank stabilization would not be feasible since the College would not proceed with the project if the adjacent bank is not stabilized with revetment to protect the athletic fields from potential scouring along the eastern property line. Potential loss of the athletic fields due to scouring would not meet the project purpose and need for a long term solution for these facilities. Furthermore, since any potentially conceivable westerly roadway could not use the existing culvert across the riparian area, a new bridge would be required across sensitive habitat to maintain existing vehicular access to the SIBL baseball fields. The new bridge would traverse an area that is known to be occupied by Least Bells Vireo. The new bridge would cause a direct take of this endangered species’ habitat and would therefore create more serious environmental effects than the proposed project. If waters of the U.S. in the riparian area are to be avoided, the new bridge would need to be of a large, costly, and intrusive scale. Consequently, these alternatives to the proposed Project are considered to be infeasible.
Figure E-3 Alternative 1
Figure E-4 Alternative 2
Figure E-5 Alternative 3
Appendix E Clean Water Act Section 404 Permit – Supporting Analysis for Bank Stabilization

Blank Page for Back of Figure