Chapter 13: Viruses
Introduction to Viruses

- “Virus” originates from Latin word “poison”.
- Term was originally used by Pasteur to describe infectious agent for rabies.
- First virus discovered was tobacco mosaic disease virus (TMV) in 1890s.
- Distinguished from bacteria by being “filterable agents” in early 1900s.
- In 1930s: TMV was isolated and purified. Electron microscope was used to observe viruses.
- By 1950s science of virology was well established.
Patient infected with smallpox virus

Source: Center for Disease Control (CDC)
Characteristics of all viruses

- Acellular infectious agents
- Obligate intracellular parasites
- Possess either DNA or RNA, never both
- Replication is directed by viral nucleic acid within a cell
- Do not divide by binary fission or mitosis
- Lack genes and enzymes necessary for energy production
- Depend on host cell ribosomes, enzymes, and nutrients for protein production
- Smaller than most cells
Viruses are Smaller Than Most Cells

- **Bacteriophage T4**: 225 nm
- **Bacteriophage M13**: 800 \times 10 nm
- **Tobacco mosaic virus**: 250 \times 18 nm
- **E. coli** (a bacterium): 3000 \times 1000 nm
- **Adenovirus**: 90 nm
- **Bacteriophages f2, MS2**: 24 nm
- **Poliovirus**: 30 nm
- **Chlamydia**: 1000 nm
- **Ebola virus**: 970 nm
- **Plasma membrane of red blood cell**: 10 nm thick
- **Human red blood cell**: 10,000 nm in diameter
<table>
<thead>
<tr>
<th></th>
<th>Bacteria</th>
<th>Rickettsias/Chlamydias</th>
<th>Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracellular parasite</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Binary fission</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pass through bacteriological filters</td>
<td>No</td>
<td>No/Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Possess both DNA and RNA</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ATP-generating metabolism</td>
<td>Yes</td>
<td>Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>Ribosomes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sensitive to antibiotics</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sensitive to interferon</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Components of mature viruses (virions):

Capsid: Protein coat made up of many protein subunits (capsomeres). Capsomere proteins may be identical or different.

Genetic Material: Either RNA or DNA, not both

Nucleocapsid = Capsid + Genetic Material

Additionally some viruses have an:

Envelope: Consists of proteins, glycoproteins, and host lipids. Derived from host membranes.

Naked viruses lack envelopes.
Viruses Have Either DNA or RNA Inside a Protein Capsid (Nucleocapsid)

Naked Virus

Enveloped Virus
Viruses are classified by the following characteristics:

- Type of genetic material
- Capsid shape
- Number of capsomeres
- Size of capsid
- Presence or absence of envelope
- Host infected
- Type of disease produced
- Target cell
- Immunological properties
Types of viral genetic material:

Genetic material may be single stranded or double stranded:

- **Single stranded DNA (ssDNA):**
 - Parvoviruses

- **Double stranded DNA (dsDNA):**
 - Herpesviruses
 - Adenoviruses
 - Poxviruses
 - Hepadnaviruses* (Partially double stranded)

- **Single stranded RNA (ssRNA):** May be plus (+) or minus (-) sense:
 - Picornaviruses (+)
 - Retroviruses (+)
 - Rhabdoviruses (-)

- **Double stranded RNA (dsRNA):**
 - Reoviruses
Capsid morphology:

- **Helical**: Ribbon-like protein forms a spiral around the nucleic acid. May be rigid or flexible.
 - Tobacco mosaic virus
 - Ebola virus

- **Polyhedral**: Many-sides. Most common shape is icosahedron, with 20 triangular faces and 12 corners.
 - Poliovirus
 - Herpesvirus

- **Complex viruses**: Unusual shapes
 - Bacteriophages have tail fibers, sheath, and a plate attached to capsid.
 - Poxviruses have several coats around the nucleic acid.
Examples of Capsid Morphology

(a) A helical virus
(b) Ebola virus
(e) A polyhedral virus
(b) A Mastadenovirus

(a) An enveloped helical virus
(b) Influenzavirus

(a) A T-even bacteriophage
(b) Orthomyxovirus
Host Range: Spectrum of hosts a virus can infect.

- Bacteria (Bacteriophages)
- Animals
- Plants
- Fungi
- Protists

Viral Specificity: Types of cells that virus can infect.

- Dermotropic
- Neurotropic
- Pneumotropic
- Lymphotropic
- Viscerotrophic: Liver, heart, spleen, etc.
Life Cycle of Animal Viruses

1. **Attachment or adsorption**: Virus binds to specific receptors (proteins or glycoproteins) on the cell surface.

2. **Penetration**: Virus enters cell through one of the following processes:
 - **Direct fusion** with cell membrane
 - **Endocytosis** through a clathrin coated pit

3. **Uncoating**: Separation of viral nucleic acid from protein capsid. Lysosomal, cytoplasmic, or viral enzymes may be involved.
Attachment, Penetration, and Uncoating of Herpes Virus
Life Cycle of a DNA Virus

1. Virion attaches to host cell
2. Virion penetrates cell and its DNA is uncoated
3. Early transcription and translation; enzymes are synthesized
4. Late transcription; DNA is replicated
5. Late translation; capsid proteins are synthesized
6. Virions mature
7. Virions are released

Papovavirus

Host cell

Nucleus
Cytoplasm

Capsid proteins

DNA

© BENJAMIN/CUMMINGS
Life Cycle - Animal Viruses (Continued)

4. **Synthetic Phase**: Involves several processes:

- Synthesis of viral proteins in cytoplasm
- Replication of viral genome:
 - DNA viruses typically replicate in nucleus
 - RNA viruses replicate in cytoplasm
- Assembly of progeny virus particles

The synthetic stage can be divided in two periods:

- **Early period**: Synthesis of proteins required for replication of viral genetic material.
- **Late period**: Nucleic acid replication and synthesis of capsid and envelope proteins
5. **Release of progeny virions**: There are two main mechanisms of release:

A. Lysis of cells: Naked viruses and pox viruses leave cell by rupturing the cell membrane. Usually results in death of the host cell.

Example: Poliovirus

B. Budding: Enveloped viruses incorporate viral proteins in specific areas of a membrane and bud through the membrane. Envelope contains host lipids and carbohydrates. Host cell does not necessarily die.

Example: Human Immunodeficiency Virus
Release of a Virus by Budding

(a) Release by budding

Viral capsid
Host cell plasma membrane
Viral protein
Bud
Envelope

(b) Alphavirus
Life Cycle of Bacteriophages

T-Even Bacteriophages: Lytic Cycle

Lytic: Cell bursts at end of cycle

1. **Attachment or adsorption:** Virus tail binds to specific receptors on the cell surface.

2. **Penetration:** Virus injects genetic material (DNA) into cell. Tail releases lysozyme, capsid remains outside.

3. **Biosynthesis:** Viral proteins and nucleic acids are made.

Eclipse phase: No virions can be recovered from infected cells.
Lytic Cycle of Bacteriophage

1. ATTACHMENT: Phage attaches to host cell

2. PENETRATION: Phage penetrates host cell and injects its DNA
4. **Maturation**: Bacteriophage capsids and DNA are assembled into complete virions.

5. **Release**: Bacteriophage virions are released from the cell. Plasma membrane breaks open and cell lyses.

Burst time: Time from attachment to release of new virions (20-40 minutes).

Burst size: Number of new phage particles that emerge from a single cell (50-200).
Lytic Cycle of Bacteriophage

3 BIOSYNTHESIS: Phage DNA directs synthesis of viral components by the host cell.

4 MATURATION: Viral components are assembled into virions.

5 RELEASE: Host cell lysed and new virions are released.
Life Cycle of Bacteriophages

Bacteriophage Lambda: Lysogenic Cycle

1. **Attachment and Penetration**: Virus tail binds to specific receptors on the cell surface and injects genetic material (DNA) into cell.

2. **Circularization**: Phage DNA circularizes and enters either lytic or lysogenic cycle.

Lysogenic Cycle

3. **Integration**: Phage DNA integrates with bacterial chromosome and becomes a **prophage**. Prophage remains **latent**.

4. **Excision**: Prophage DNA is removed due to a stimulus (e.g.: chemicals, UV radiation) and initiates a lytic cycle.
Lysogenic versus Lytic Cycles of Bacteriophage

1. Phage attaches to host cell and injects DNA.
2. Phage DNA circularizes and enters lytic cycle or lysogenic cycle.
3. New phage DNA and proteins are synthesized and assembled into virions. (alternative: Phage DNA integrates within the bacterial chromosome by recombination, becoming a prophage.)
5. Occasionally, the prophage may excise from the bacterial chromosome by another recombination event, initiating a lytic cycle.

Lytic cycle

- Many cell divisions.

Lysogenic cycle

- Lysogenic bacterium reproduces normally.

© BENJAMIN/CUMMINGS
Important Human Viruses
DNA Virus Families

1. **Adenoviruses**: Cause respiratory infections, such as the common cold. First isolated from adenoids.

2. **Poxviruses**: Produce skin lesions. Pox is a pus filled vesicle.
 Cause the following diseases:
 - Smallpox
 - Cowpox
 - Molluscum contagiosum.
Smallpox: Poxviruses Cause Pus Filled Vesicles

Disease was eradicated worldwide by immunization in 1977. Source: Microbiology Perspectives, 1999.
3. **Herpesviruses**: Herpetic means to cause spreading cold sores. Over 100 species. Eight infect humans:

- Herpes simplex 1 (oral herpes)
- Herpes simplex 2 (genital herpes)
- Varicella-zoster virus (chickenpox and shingles)
- Epstein-Barr virus
- Kaposi’s sarcoma virus
4. **Papovaviruses**: Cause warts (papillomas), tumors (polyomas), and cytoplasmic vacuoles. Human papilloma virus is sexually transmitted and causes most cases of cervical cancer in women. Cervical cancers typically take over 20 to 30 years to develop, most women develop them in their 40s and 50s or older. Pap smears are used to detect them.

5. **Hepadnaviruses**: Cause hepatitis and liver cancer. Hepatitis B virus.
Biological Properties of Hepadnaviruses

- Enveloped virus. Envelope contains middle, large, and major surface proteins.

- Many incomplete viral particles found in infected individuals.

- Small circular DNA molecules that are partially double stranded.
 - Long Strand: Constant length. 3200 nucleotides
 - Short strand: 1700 to 2800 nucleotides.

- Genome encodes for a handful of proteins:
 - Surface antigens
 - Capsid proteins
 - Polymerase
 - Protein X: Stimulates gene expression
1. **Picornaviruses**: Naked viruses with a single strand of RNA. Include the following:
 - Poliovirus
 - Hepatitis A virus
 - Rhinoviruses: Over 100 viruses that cause the common cold.

2. **Togaviruses**: Enveloped ssRNA viruses. Cause rubella and horse encephalitis.

Examples of RNA Viruses

Rubella

Vesicular Stomatitis Virus

Mouse Mammary Tumor Virus
Rabies is Caused by a Rhabdovirus

Hydrophobia in rabies patient.
Source: Diagnostic Pictures in Infectious Diseases, 1995
Important Human Viruses (Continued)

RNA Virus Families

4. **Retroviruses**: Unique family of enveloped viruses. Have the ability to convert their RNA genetic material into DNA through an enzyme called **reverse transcriptase**. Viral DNA is integrated into host chromosome (provirus) where it can remain dormant for a long time.

Include HIV-1 and HIV-2 which cause AIDS and Human T Lymphocyte viruses which cause cancer.
Retroviruses Convert RNA into DNA via Reverse Transcriptase

1. Retrovirus penetrates host cell.
2. After uncoating, reverse transcription of the viral RNA produces double-stranded DNA.
3. The new viral DNA is transported into the host cell’s nucleus and integrated as a provirus. The provirus may divide indefinitely with the host cell DNA.
4. Transcription of the provirus may also occur, producing RNA for new retrovirus genomes and RNA that codes for the retrovirus capsid and envelope proteins.
5. Mature retrovirus leaves host cell, acquiring an envelope as it buds out.
Viruses and Cancer

- **Oncogenic viruses**: Approximately 10% of all cancers are virus induced.

- **Oncogenes**: Viral genes that cause cancer in infected cells.

- **Provirus**: Viral genetic material integrates into host cell DNA and replicates with cell chromosome. Some viruses may incorporate host genes which can cause cancer under certain conditions.

Example: Retroviruses
DNA Oncogenic Viruses:

- Adenoviridae (Rodents)
- Herpesviridae (Epstein-Barr Virus and Kaposi’s Sarcoma Herpes Virus)
- Papovaviridae (Papillomaviruses)
- Hepadnaviridae (Hepatitis B)

RNA Oncogenic Viruses:

- Retroviridae (Human T-cell leukemia 1 & 2)
Detection of Viruses

- **Electron microscopy**
- **Immunologic Assays:** Detect specific viral proteins or antibodies to them.
 - ELISA (Enzyme Linked Immuno Sorbent Assay)
 - Western Blotting: Detects viral proteins
- **Biological Assays:** Detect cytopathic effects (CPE) caused by viral infection of cells.
 - Plaque assays for lytic viruses
 - Focus formation for transforming oncogenic viruses
- **Hemagglutination Assay:** Many viruses clump red blood cells.
- **Molecular Assays:** Assay for viral nucleic acids.
 - PCR (Polymerase chain reaction)
 - Southernns (DNA) or Northerns (RNA)
Viral Detection Methods

ELISA Test for Antibodies

1. Antigen is adsorbed to well.
2. Patient antiserum is added; complementary antibody binds to antigen.
3. Enzyme-linked anti-HISG is added and binds to bound antibody.
4. Enzyme's substrate (●) is added, and reaction produces a product that causes a visible color change (●).

(b) A positive indirect ELISA to detect antibodies

Plaque Assays

Hemagglutination

Red blood cells + Viruses → Hemagglutination

Copyright © 2004, Pearson Education, Inc., publishing as Benjamin Cummings.
<table>
<thead>
<tr>
<th>Agent</th>
<th>Virus</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amantadine</td>
<td>Influenza</td>
<td>Inhibits uncoating</td>
</tr>
<tr>
<td>Acyclovir</td>
<td>Herpes simplex</td>
<td>Inhibits DNA polymerase</td>
</tr>
<tr>
<td></td>
<td>Herpes zoster</td>
<td></td>
</tr>
<tr>
<td>Gancyclovir</td>
<td>Cytomegalovirus</td>
<td>Inhibits DNA polymerase</td>
</tr>
<tr>
<td>Ribivarin</td>
<td>Respiratory syncitital</td>
<td>Inhibits viral enzymes for guanine biosynthesis</td>
</tr>
<tr>
<td></td>
<td>virus/Lassa virus</td>
<td></td>
</tr>
<tr>
<td>Azidothymidine</td>
<td>HIV</td>
<td>Inhibits reverse transcriptase</td>
</tr>
<tr>
<td>Interferon</td>
<td>Cytomegalovirus</td>
<td>Inhibits protein synthesis</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B</td>
<td>Degrades ssRNA</td>
</tr>
</tbody>
</table>
VIRAL VACCINES

First vaccine was used by Jenner (1798) against smallpox and contained live vaccinia (cowpox) virus.

I. Live attenuated vaccines: Mutant viral strains produce an asymptomatic infection in host.

Examples: Polio (oral, Sabin vaccine), measles, yellow fever, mumps, rubella, chickenpox, and Flu-Mist (influenza).

• Advantages: Better immune response
• Disadvantages: May cause disease due to contamination, genetic instability, or residual virulence.

Oral polio vaccine recently discontinued in U.S.
II. Killed or inactivated vaccines: Virus is typically grown in eggs or cell culture and inactivated with formalin.

Examples: Polio (shots, Salk vaccine), rabies, and influenza A & B.

Advantages: Immunization with little or no risk of infection.

Disadvantages: Less effective immune response, inactivation may alter viral antigens.

III. Recombinant vaccines: Viral subunits are produced by genetically engineered cells.

Example: Hepatitis B

Advantages: Little or no risk of infection.

Disadvantages: Less effective immune response.
Flu Vaccine is Made from Eggs
History of Vaccines

- 1798: Smallpox vaccine results published by Jenner
- 1885: Rabies vaccine developed by Pasteur
- 1906: Pertussis (whooping cough) vaccine developed
- 1928: Diphtheria vaccine developed
- 1933: Tetanus toxoid vaccine developed
- 1946: DPT combination vaccine becomes available
- 1955: Polio inactivated vaccine (IPV) licensed by Salk
- 1963: Polio oral vaccine (OPV) developed by Sabin
- 1963: Measles vaccine developed
- 1968: Mumps vaccine developed
- 1969: Rubella/German measles vaccine developed
- 1972: U.S. ended routine smallpox vaccination
- 1978: Pneumococcal vaccine becomes available
- 1979: MMR combination vaccine added to routine childhood immunization schedule
History of Vaccines

- **1987:** *Hemophilus influenzae* type B (Hib) vaccine licensed
- **1988:** Vaccine Injury Compensation Program funded
- **1991:** Hepatitis B recombinant vaccine recommended for infants. Vaccine was licensed in 1986.
- **1995:** Varicella (chickenpox) vaccine licensed
- **1996:** DTaP (acellular Pertussis) vaccine licensed for children under 18 mo.; believed to be safer than DTP.
- **1998:** Rotavirus vaccine licensed for diarrheal disease
- **1999:** Rotavirus vaccine removed for safety reasons
- **2000:** Polio oral vaccine removed for safety reasons

 Prevnar (Pneumococcal conjugate vaccine) licensed
- **2002:** Thimerosal use as vaccine preservative in most pediatric vaccines discontinued for safety reasons
- **2002:** Flumist (inhaled flu vaccine) reviewed by FDA
- **2007:** Gardasil (HPV) and Menactra (meningitis) vaccines licensed
Vaccine Safety Concerns

Adverse Reactions: May occur almost immediately or within days, weeks, or months of vaccination.

1. Toxic Effects:

 - **Bacterial Toxins**: Killed bacterial vaccines can release toxins into the bloodstream. May be associated with swelling, soreness, fever, behavioral and neurological problems (ADHD, autism, etc.).

 - **Vaccine Ingredients**: May cause neurological, immunological, digestive, or other problems.
 - **Thimerosal**: is a preservative used for multiple dose vaccines that contains 49% ethylmercury. Removed from most pediatric vaccines in 2002.
 - **Other ingredients**: Aluminum, formaldehyde, benzethonium chloride, ethylene glycol, glutamate, phenol, etc.
Vaccine Safety Concerns

2. Immune Reactions:
 - **Autoimmune**: Patient makes antibodies that cross react with host antigens. May cause rheumatoid arthritis, juvenile diabetes, multiple sclerosis, Crohn’s disease (bowel inflammation), Guillain-Barre syndrome (muscle weakness), and encephalitis. Suspect vaccines include measles, tetanus, and influenza shots.
 - **Allergic reactions**: Vaccine ingredients may induce allergic reactions and/or anaphylactic shock in certain individuals. E.g.: Eggs, gelatin, neomycin, and streptomycin.

3. Infectious Viruses:
 - Live attenuated virus vaccines can mutate back to a harmful form and cause the disease they are designed to prevent: oral polio, measles, mumps, rubella, and chickenpox vaccines.
 - Vaccines may be contaminated with other viruses.
Vaccine Safety Concerns

Can Vaccines Cause Autism?

- **Modern Epidemic:** One in 150 children in the United States are autistic. In 1960s incidence was 1 in 2,000. Boys are more heavily affected than girls (4-5 X higher rates of autism).

- **Symptoms:** Loss of language, language delays, repetitive behaviors (stimming: hand flapping, running in circles, rocking), and social difficulties (poor eye contact, isolation). Can vary from severe to mild.

- **Cause:** Unknown. Traditional treatment focuses on symptoms: speech, occupational and behavioral therapy.

- **Hypothesis:**
 - Multiple vaccines and toxins at early age overwhelm immune system
 - Impaired immunity: Frequent ear infections, colds, etc.
 - Repeated use of antibiotics to treat infections may wipe out beneficial microbial flora and allow “bad microbes” (yeasts and others) to overgrow (**gut dysbiosis**)
 - Intestinal problems: Inability to digest and absorb certain foods (milk, gluten, and others). May develop multiple food intolerances and allergies.
 - Neurological symptoms: May be caused by gut dysbiosis (microbial toxins) and digestive problems (caseomorphin, gliadorphin).
 - **Alternative biomedical therapies:** Special diet (Gluten free/Casein free), probiotics, antifungals, and nutritional supplements. Vaccine schedule.
Hepatitis B is a Major Health Threat

- Fifth leading cause of deaths due to infectious disease in the world.
 - 2 million deaths per year.

- Over 300 million infected individuals worldwide.
 - In Southeast Asia and Africa 10% population is infected.
 - In North America and Europe 1% population is infected.

- Highly contagious. Virus particles found in saliva, blood, and semen.

- Mechanisms of transmission:
 - Mother to infant: Primarily at birth.
 - Intimate or sexual contact.
 - Blood transfusions or blood products.
 - Direct contact with infected individuals: Health care workers.
Infectious Diseases Causing Most Deaths Worldwide in 2000

<table>
<thead>
<tr>
<th>Disease</th>
<th>Cause</th>
<th>Deaths/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Respiratory*</td>
<td>Bacterial or viral</td>
<td>4,400,000</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>Bacterial or viral</td>
<td>3,200,000</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Bacterial</td>
<td>3,100,000</td>
</tr>
<tr>
<td>Malaria</td>
<td>Protozoan</td>
<td>3,100,000</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Viral</td>
<td>2,000,000</td>
</tr>
<tr>
<td>Measles</td>
<td>Viral</td>
<td>1,500,000</td>
</tr>
<tr>
<td>AIDS</td>
<td>Viral</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Neonatal Tetanus</td>
<td>Bacterial</td>
<td>600,000</td>
</tr>
</tbody>
</table>

*: Pneumonia, bronchitis, influenza, etc.
Characteristics of Hepatitis B Infection

Incubation period: 2 to 6 months.

Several possible outcomes:

- **Asymptomatic infection**: Most individuals.
- **Acute Hepatitis**: Liver damage, abdominal pain, jaundice, etc. Strong immune response usually leads to a complete recovery.
- **Fulminant Hepatitis**: Usually fatal. Rare.
- **Chronic Hepatitis**: Poor immune response to virus, which remains active for years. May be healthy, experience fatigue, or have persistent hepatitis. Associated with development of liver cancer and cirrhosis.
Characteristics of Hepatitis B Infection

Several possible outcomes:

- **Cirrhosis of the Liver**: Severe organ damage, leading to liver failure.

- **Hepatocellular Carcinoma**: Usually takes 30 to 50 years to develop. May develop in children.
Herpesviruses

Family of over 100 viruses which infect a broad range of animals.

- **Polyhedral capsid:** Icosahedral capsid, 100-110 nm in diameter.

- **Envelope:** Contains viral glycoproteins on its surface. Virion is about 200 nm in diameter.

- **Tegument:** Unique to herpesviruses. Amorphous material surrounding capsid. Contains several viral proteins.

- **Large genome:** 140-225 kb of linear dsDNA which circularizes after infection.
Morphology of Herpesviruses

A. Schematic Representation

B. Electron micrograph

Source: Virology 3rd edition, 1996
Biological Properties of Herpesviruses

- Encode large array of enzymes involved in nucleic acid metabolism.

- Synthesis of viral DNA and assembly of capsid occurs in the nucleus.

- Production of infectious progeny causes destruction of infected cell.

- **Latency:** Can remain latent in their natural hosts. Viral DNA remains as closed circular molecule and only a few viral genes are expressed.

- Establish **life-long infections**.
Human Herpesviruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Common Name/Disease</th>
<th>Class</th>
<th>Size</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHV-1</td>
<td>Herpes simplex 1 (HSV-1)</td>
<td>α</td>
<td>150 kb</td>
<td>Sensory nerve ganglia</td>
</tr>
<tr>
<td></td>
<td>Oral, ocular lesions, encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-2</td>
<td>Herpes simplex 2 (HSV-2)</td>
<td>α</td>
<td>150 kb</td>
<td>Sensory nerve ganglia</td>
</tr>
<tr>
<td></td>
<td>Genital lesions, neonatal infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-3</td>
<td>Varicella zoster virus</td>
<td>α</td>
<td>130 kb</td>
<td>Sensory nerve ganglia</td>
</tr>
<tr>
<td></td>
<td>Chickenpox, shingles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-4</td>
<td>Epstein-Barr virus</td>
<td>γ</td>
<td>170 kb</td>
<td>B cells Salivary gland</td>
</tr>
<tr>
<td></td>
<td>Mononucleosis, tumors`</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-5</td>
<td>Human Cytomegalovirus</td>
<td>β</td>
<td>230 kb</td>
<td>Lymphocytes</td>
</tr>
<tr>
<td></td>
<td>Microcephaly, infections in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>immunocompromised hosts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-6/7</td>
<td>Human Herpesvirus 6/7</td>
<td>β</td>
<td>160 kb</td>
<td>CD4 T cells</td>
</tr>
<tr>
<td></td>
<td>Roseola Infantum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HHV-8</td>
<td>Human Herpesvirus 8</td>
<td>γ</td>
<td>140 kb</td>
<td>Kaposi’s Sarcoma tissue</td>
</tr>
<tr>
<td></td>
<td>Kaposi’s sarcoma, lymphoma?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clinical Manifestations of HSV-1

Epidemiology: 70-90% of adults are infected. Most are asymptomatic.

- **Gingivostomatitis:** Most common manifestation of primary HSV-1 infection. Initial infection typically occurs in early childhood.

- **Recurrent herpes labialis:** Cold sores, fever blisters. After primary disease, virus remains latent in trigeminal ganglion. During reactivation, virus travels down nerve to peripheral location to cause recurrence.

- **Whitlow:** Infection of finger.
Recurrent Herpes Labialis

Less than 1 day with erythema and burning

Same patient 24 h later with multiple fluid filled vesicles and erythema
Recurrent Herpes Labialis: Bilateral vesicles on upper and lower lips.
Herpetic Whitlow: Multiple crusting ulcerations that begin as vesicles.

- **Keratoconjunctivitis**: Most common cause of corneal blindness in US.
- **Eczema herpeticum**: Severe herpetic outbreaks in areas with eczema.
- **Herpes gladiatorum**: Inoculation of abraded skin by contact with infected secretions.
- **HSV encephalitis**: Most common cause of acute sporadic encephalitis in US.
- **Chronic herpes simplex infection**: Lesions in atypical oral locations. Immunocompromised patients.
Chronic Herpes Simplex infection with lesions on tongue and lips.

Clinical Manifestations of HSV-2

Epidemiology: Acquisition follows typical pattern of STD. Seroprevalence ranges from 10% to 80%. Most individuals are asymptomatic.

- **Genital Herpes:** Most common manifestation HSV-2 infection. Most common cause of genital ulcers in U.S. Lesions on cervix, perineum, or penis shaft. Recurrence rates vary widely.

- **Perirectal Herpes:** Can be severe in AIDS patients.

- **Orofacial herpes:** Less than 5% of cases.

- **Neonatal Herpes:** Due to contact with infected genital secretions during delivery. Severe disease with encephalitis, pneumonitis, hepatitis, and retinitis.
Herpes simplex 2 infection with fluid filled vesicles on penis.
Source: Mike Remington, University of Washington Viral Disease Clinic
Acyclovir resistant peri-rectal HSV2 infection in HIV infected male. Source: AIDS, 1997
Clinical Manifestations of Varicella Zoster (HHV-3)

- **Chickenpox (Varicella):** Most common manifestation of primary herpes zoster infection.

Epidemiology: Highly communicable. Airborne or skin transmission. Incubation period 14 days.

Before the vaccine (Varivax) was introduced in 1995, there were about 3 million cases/year in US (most in the spring). Since 1995, the number of cases has dropped by 85%.

Symptoms: Malaise, sore throat, rhinitis, and generalized rash that progresses from macules to vesicles. Intraoral lesions may precede rash.

Complications: Reye’s syndrome, bacterial superinfection of lesions, varicella pneumonia and neonatal varicella (30% mortality).
Herpes Zoster (Shingles) with vesicles on skin of left hip.
Clinical Manifestations of Varicella Zoster (HHV-3)

- **Vaccine:** Prevents chickenpox in 70-90% of recipients. First dose given between 12 and 18 months, second dose at 4 to 6 years. May help prevent shingles in adults. Adults get two shots 4 to 8 weeks apart.

- **Shingles (Herpes Zoster):** Recurrence of latent herpes zoster infection.

Epidemiology: Occurs in 10-20% of individuals who have had chickenpox at some stage of life. Incidence increases with old age, impaired immunity, alcohol abuse, and presence of malignancy.

Symptoms: Vesicular eruption on skin or mucosa, that follows pathway of nerves. Typically unilateral, stopping at midline.

Complications: Post-herpetic neuralgia can last months to years.
Shingles in an AIDS Patient
EBV Associated Diseases (HHV-4)

Epidemiology: 90% of adults are infected. Initial infection typically occurs in early childhood or adolescence.

Most individuals are asymptomatic, but shed virus in saliva throughout life.

- **Infectious mononucleosis:** A minority of infected individuals. Fever, pharyngitis, and lymphadenopathy. Splenomegaly is common.
- **Endemic Burkitt’s Lymphoma** (Africa)
- **Nasopharyngeal carcinoma** (Asia)
- **Oral Hairy Leukoplakia:** In HIV + individuals.
Burkitt’s Lymphoma with right facial swelling. Associated with EBV. Source: Handbook of pediatric oral pathology, 1981.
- **Non-Hodgkin’s Lymphoma:** In HIV + individuals
- **Hodgkin’s Lymphoma:** 50% of cases.
- **Smooth muscle tumor (children)**
- **Thymic lymphoepithelioma**
- **Salivary gland carcinoma**
- **Urogenital carcinoma**
Clinical Manifestations of Cytomegalovirus (HHV-5)

Epidemiology: 50% of US population is seropositive.

Transmission: Perinatal, early childhood, sexual, transfusions, and organ transplants.

Symptoms: Most cases are asymptomatic.

- Congenital CMV: May cause intellectual or hearing deficits.
- Pneumonitis in bone marrow transplants.
- Retinitis, esophagitis, and colitis are common in AIDS patients
HHV-8 Associated Diseases

First identified in 1995.

- **Kaposi’s Sarcoma**: Accounts for 80% of all cancers in AIDS patients.
 Lesions are flat or raised areas of red to purple to brown discoloration. May be confused with hemangioma or hematoma.
 - Strong male predominance.
 - 2/3 of affected patients present oral lesions.
 - Oral lesions are initial presentation in 20% of patients.
 - Progressive malignancy that may disseminate widely.
 - Oral lesions are a major source of morbidity and frequently require local therapy.
Extensive symmetric tumor lesions of Kaposis’s sarcoma in an AIDS patient.
Source: AIDS, 1997
Kaposi’s Sarcoma hemorrhagic mass on anterior maxillary gingiva.
Endemic Kaposi’s Sarcoma, nodular form.
Introduction to Influenza Viruses

- Enveloped ssRNA virus (negative strand).
 - Genome is divided into 8 segments, each containing 1 or 2 genes.
 - RNA is replicated in cell’s nucleus.

- Helical nucleocapsid contains transcriptase.

- Envelope forms as virus buds from cell membrane.

- Two surface glycoproteins:
 - **Hemagglutinin**: Binds to sialic acid on host cell surfaces.
 - **Neuraminidase**: Enzyme that cleaves sialic acid.

- Fusion of envelope with cell surface membrane requires cleavage of hemagglutinin by host cell enzymes.
 - Serine proteases found in respiratory tract of mammals and digestive tract of birds.
 - Mutant hemagglutinin can be cleaved by other enzymes in body, causing infections throughout body.
Structure of Influenza Virus
Influenza Virus Strains

I. Influenza A:

- Promiscous: Infects humans, pigs, chickens, seals, horses, whales, and birds.

- Diverse group of substrains:
 - 15 different hemagglutinin molecules
 - 9 different neuraminidase molecules

- Also contains M2 protein: Ion channel, blocked by antiviral drugs amantidine and rimantidine

- Can mutate through *antigenic shift* in cells that are infected with two or more substrains.

- Responsible for all pandemics.
Influenza Virus Strains

II. Influenza B:

- Only infects humans.
- Little diversity: Only one form of HA and NA.
- Lacks M2 protein and not inhibited by antiviral drugs amantidine and rimantidine.
- Can mutate through *antigenic drift* only.

III. Influenza C:

- Not important human pathogen
Influenza Pandemics

◆ All caused by influenza type A.

◆ The deadliest major pandemic occurred in 1918, during World War I (Spanish flu).
 ◆ Over 30 million deaths worldwide in less than 10 months.
 ◆ 600,000 deaths in the U.S.
 ◆ Caused by H1N1 subtype of influenza A

◆ Asian flu in 1957:
 ◆ Caused by H2N2 subtype of influenza A

◆ 1968 Hong Kong flu:
 ◆ Caused by H3N2 subtype of influenza A

◆ In 1997 a new strain appeared in Hong Kong (H5N1) that appeared to have jumped directly from birds to humans.
Influenza Epidemics

- Smaller than pandemics, occur regularly.
- In 1994 flu epidemic:
 - Infected 90 million Americans (35% of population)
 - Over 69 million lost days of work.
- Typical epidemics in the U.S.
 - Infects 10-20% of population.
 - Causes 20,000 deaths per year from complications.
Prions

- First described by Stanley Prusiner in 1982.
- Infectious proteins that cause nine known neurological diseases called transmissible spongiform encephalopathies (TSEs):
 - Mad cow disease or Bovine Spongiform Encephalitis (1987 in UK):
 Linked to feeding scrapie infected sheep to cattle.
 - Human diseases: Tendency to run in families.
 - Creutzfeldt-Jakob Disease: 200 cases/year in US, genetic, surgery, transplants
 - Variant CJD: Linked to eating infected beef (150+ cases worldwide)
 - Kuru: Associated with cannibalism
 - Gertsmann-Straussler-Scheinker Syndrome
 - Fatal Familial Insomnia
 - Scrapie in sheep (1940s in U.S.)
 - Chronic Wasting Disease: Deer and elk
 - Transmissible Mink Encephalopathy
1. PrP_c produced by cells is secreted to the cell surface.
2. PrP_{Sc} may be acquired or produced by an altered PrP_c gene.
3. PrP_{Sc} reacts with PrP_c on the cell surface.
4. PrP_{Sc} converts the PrP_c to PrP_{Sc}.
5. The new PrP_{Sc} converts more PrP_c.
6. The new PrP_{Sc} is taken in by endocytosis.
7. PrP_{Sc} accumulates in endosomes.
8. PrP_{Sc} continues to accumulate as the endosome contents are transferred to lysosomes. The result is cell death.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.