CHAPTER 6 SKELETAL TISSUE

Skeletal System

- Bones
 - Axial Skeleton (central)
 - Skull, vertebrae, ribs, sternum
 - Appendicular Skeleton (extremities)
 - Upper limbs: shoulder, arms, hands
 - Lower limbs: hips, legs, feet

- Cartilage
 - Joints: discs, growth plates

- Joints
- Fibrous connective tissue
 - Ligaments
 - Periosteum

Bone Functions

- Support
 - Weight bearing
 - Attaches bones
- Movement
 - Joints: muscles, tendons
- Protection
 - Brain, spinal cord, heart, liver, kidneys, uterus, eyes, ears
- Storage
 - Minerals
 - Adipose
 - Hemopoiesis: WBC, RBC, Platelets

Bone Structure

- Classification of Bone Structure
 - Long bones: arms, legs, fingers, thumbs
 - Short bones: carpal bones, tarsal bones, metacarpals, metatarsals
 - Flat bones: scapula, clavicle, cranial bones, pelvis, ribs
 - Irregular bones: facial bones, vertebrae, calcaneus

Bone Tissue = Osseous tissue

- Connective tissue = cells + matrix
 - Cells = osteocytes - adult bone cells
 - Osteoclasts - cells that destroy bone tissue
 - Osteoblasts - cells that build bone tissue
 - Osteoid - proteins 1/3 matrix

Bone matrix = Osteons tissue

- Mineral content includes Ca, Mg, P, F, mostly inorganic Ca₃(PO₄)₂, calcium phosphate

Osteoid: proteins 1/3 matrix

Minerals: inorganic 2/3 Ca, Mg, P, F, hydroxyapatites

Mostly calcium phosphate, Ca₃(PO₄)₂, hydroxyapatites

Where do osteoblasts get the Calcium?

Bone matrix

Bone Tissue = osteons tissue

Maintain matrix and mineral content
Secret protein and deposit minerals
Return minerals to blood
bone tissue types

• 2 types of bone tissue:
 − Compact dense, solid outer layers
 − Spongy loose network of bony tissue inner layers

• all bone has both types of tissue
 − varying amounts

compact bone

• compact bone = cortical bone
 − solid tissue
 − thickest in long bones

• Haversian system = Osteon
 − lamellae - layers of matrix
 − haversian canal = central canal
 − lacunae
 − Volkmann’s canal

bone tissue – spongy bone

• Spongy = Trabecular
 • many branches (trabeculae) + spaces
 • inner layers of all bones
 − most in flat, irregular bones, epiphyses
 • no osteons
 • resists stresses in several directions
 • red bone marrow in spaces between trabeculae

c.t. membranes

• periosteum covers bone
 − fibrous (irreg) c.t connects tendons, ligaments
 − stem cells bone growth and repair
 − Sharpey’s fibers connect periosteum to bone

anatomy of long bone

• diaphysis

• epiphysis

• epiphyseal plate

• medullary cavity

• periosteum

• articular cartilage
Osteogenesis

- ossification = replacing tissue with bone
 - embryonic
 - childhood
 - adult
- calcification = depositing calcium into any tissue
- intramembranous ossification
 fibrous c.t. → bone
- endochondral ossification
 cartilage → bone

intramembranous ossification

- Skull, flat bones of clavarium
 - fibrous c.t. → bone
 - ossification - starts at center of tissue; grows outward
 - not complete at birth ends about age 2.
 - Fontanels spaces between bones allow compression during birth
 - anterior
 - posterior
 - sphenoid = anterolateral
 - mastoid = posterolateral
 - sutures

endochondral ossification

- cartilage model froms first
- bone replaces cartilage
- primary ossification center diaphysis
- secondary ossification center epiphysis

- later: trabeculae form; spongy bone
 - blood vessels invade and form red bone marrow
 - medullary cavity forms
- epiphyseal plate cartilage left between ossification centers
- articular cartilage remnant of cartilage model

long bone growth - Childhood

- interstitial growth length
- epiphyseal plate = cartilage
 - growth zone - mitosis of chondrocytes grows toward epiphysis
 - osteogenic zone - bone replaces cartilage near diaphysis
- epiphyseal closure complete ossification ends growth
appositional growth width bones get wider

hormones – bone metabolism

• bone growth:
 • growth hormone increase mitosis epiphyseal plates
 • testosterone testes
 • estrogen ovaries
calcium:
 • calcitonin
 • parathyroid hormone
 • estrogen

Calcium functions

• nerve impulses
• muscle contraction
• blood clotting
• mitosis
• bone matrix
• least important - bone

bone remodeling

• constant process
• bone deposition
 — osteoblasts
 — adds matrix and Ca++
• bone resorption
 — osteoclasts
 — remove Ca++ from bone
• Wolff’s law

fracture repair

• hematoma blood clot
• soft callus formation
 — cartilage and collagen unite broken ends
• bony callus bone replaces cartilage
• bone remodeling osteoclasts
 — return to original shape

bone fractures

• simple nondisplaced; skin intact
• compound breaks skin = open fracture
• comminuted > 1 break
• compression crushed
greenstick bending; pediatric
epiphyseal epiphysis; epiphysis slips
spiral twisting injury
what else could go wrong?

- osteomalacia
 - soft bone
 - ↓ calcium in bone

- osteoporosis
 - bone with holes
 - ↓ matrix (% Ca may be normal!)
 - causes:
 - ↓ estrogen; diet; exercise
 - drugs - corticosteroids

- osteopenia
 - any decrease of bone tissue

- arthritis
 - inflammation of joint

- osteoarthritis
 - inflammation of joint and bone

- atrophy
 - decreased bone mass