Chapter 8

An Introduction to Metabolism

PowerPoint® Lecture Presentations for Biology

Eighth Edition
Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Overview: The Energy of Life

• The living cell is a miniature chemical factory where thousands of reactions occur

• The cell extracts energy and applies energy to perform work

• Some organisms even convert energy to light, as in bioluminescence
Concept 8.1: An organism’s metabolism transforms matter and energy, subject to the laws of thermodynamics

• **Metabolism** is the totality of an organism’s chemical reactions

• Metabolism is an emergent property of life that arises from interactions between molecules within the cell
Organization of the Chemistry of Life into Metabolic Pathways

- A **metabolic pathway** begins with a specific molecule and ends with a product
- Each step is catalyzed by a specific enzyme
Fig. 8-UN1

Starting molecule

- Enzyme 1 (Reaction 1) → B
- Enzyme 2 (Reaction 2) → C
- Enzyme 3 (Reaction 3) → D

Product
• **Catabolic pathways** release energy by breaking down complex molecules into simpler compounds

• Cellular respiration, the breakdown of glucose in the presence of oxygen, is an example of a pathway of catabolism
• **Anabolic pathways** consume energy to build complex molecules from simpler ones

• The synthesis of protein from amino acids is an example of anabolism

• **Bioenergetics** is the study of how organisms manage their energy resources
Forms of Energy

- **Energy** is the capacity to cause change
- Energy exists in various forms, some of which can perform work
• Kinetic energy is energy associated with motion

• Heat (thermal energy) is kinetic energy associated with random movement of atoms or molecules

• Potential energy is energy that matter possesses because of its location or structure

• Chemical energy is potential energy available for release in a chemical reaction

• Energy can be converted from one form to another
Climbing up converts the kinetic energy of muscle movement to potential energy. A diver has more potential energy on the platform than in the water.

Diving converts potential energy to kinetic energy. A diver has less potential energy in the water than on the platform.
The Laws of Energy Transformation

• Thermodynamics is the study of energy transformations

• A closed system, such as that approximated by liquid in a thermos, is isolated from its surroundings

• In an open system, energy and matter can be transferred between the system and its surroundings

• Organisms are open systems
The First Law of Thermodynamics

• According to the **first law of thermodynamics**, the energy of the universe is constant:

 – *Energy can be transferred and transformed, but it cannot be created or destroyed*

• The first law is also called the principle of conservation of energy
The Second Law of Thermodynamics

- During every energy transfer or transformation, some energy is unusable, and is often lost as heat.
- According to the second law of thermodynamics:
 - *Every energy transfer or transformation increases the entropy (disorder) of the universe*
(a) First law of thermodynamics
(b) Second law of thermodynamics
• Living cells unavoidably convert organized forms of energy to heat

• Spontaneous processes occur without energy input; they can happen quickly or slowly

• For a process to occur without energy input, it must increase the entropy of the universe
Biological Order and Disorder

- Cells create ordered structures from less ordered materials
- Organisms also replace ordered forms of matter and energy with less ordered forms
- Energy flows into an ecosystem in the form of light and exits in the form of heat
• The evolution of more complex organisms does not violate the second law of thermodynamics

• Entropy (disorder) may decrease in an organism, but the universe’s total entropy increases
Concept 8.2: The free-energy change of a reaction tells us whether or not the reaction occurs spontaneously

• Biologists want to know which reactions occur spontaneously and which require input of energy

• To do so, they need to determine energy changes that occur in chemical reactions
Free-Energy Change, ΔG

- A living system’s **free energy** is energy that can do work when temperature and pressure are uniform, as in a living cell.
The change in free energy (ΔG) during a process is related to the change in enthalpy, or change in total energy (ΔH), change in entropy (ΔS), and temperature in Kelvin (T):

$$\Delta G = \Delta H - T\Delta S$$

Only processes with a negative ΔG are spontaneous.

Spontaneous processes can be harnessed to perform work.
Free Energy, Stability, and Equilibrium

• Free energy is a measure of a system’s instability, its tendency to change to a more stable state.

• During a spontaneous change, free energy decreases and the stability of a system increases.

• Equilibrium is a state of maximum stability.

• A process is spontaneous and can perform work only when it is moving toward equilibrium.
In a spontaneous change:
- The free energy of the system decreases ($\Delta G < 0$).
- The system becomes more stable.
- The released free energy can be harnessed to do work.

(a) Gravitational motion
- More free energy (higher G)
- Less stable
- Greater work capacity

(b) Diffusion
- Less free energy (lower G)
- More stable
- Less work capacity

(c) Chemical reaction
In a spontaneous change

- The free energy of the system decreases ($\Delta G < 0$)
- The system becomes more stable
- The released free energy can be harnessed to do work

- More free energy (higher G)
- Less stable
- Greater work capacity

- Less free energy (lower G)
- More stable
- Less work capacity
(a) Gravitational motion

(b) Diffusion

(c) Chemical reaction
Free Energy and Metabolism

- The concept of free energy can be applied to the chemistry of life’s processes.
Exergonic and Endergonic Reactions in Metabolism

• An **exergonic reaction** proceeds with a net release of free energy and is spontaneous.

• An **endergonic reaction** absorbs free energy from its surroundings and is nonspontaneous.
Fig. 8-6

(a) Exergonic reaction: energy released

(b) Endergonic reaction: energy required
Energy

(a) Exergonic reaction: energy released

Reactants

Progress of the reaction

Products

Amount of energy released ($\Delta G < 0$)
(b) Endergonic reaction: energy required

Energy

Reactants

Amount of energy required ($\Delta G > 0$)

Products

Progress of the reaction
Equilibrium and Metabolism

- Reactions in a closed system eventually reach equilibrium and then do no work.
- Cells are not in equilibrium; they are open systems experiencing a constant flow of materials.
- A defining feature of life is that metabolism is never at equilibrium.
- A catabolic pathway in a cell releases free energy in a series of reactions.
- Closed and open hydroelectric systems can serve as analogies.
Fig. 8-7

(a) An isolated hydroelectric system

{\[\Delta G < 0 \]}

(b) An open hydroelectric system

{\[\Delta G < 0 \]}

(c) A multistep open hydroelectric system

{\[\Delta G < 0 \]}

Copyright © 2006 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
(a) An isolated hydroelectric system

\[\Delta G < 0 \]

\[\Delta G = 0 \]
(b) An open hydroelectric system

\[\Delta G < 0 \]
(c) A multistep open hydroelectric system

\[\Delta G < 0 \]
Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

• A cell does three main kinds of work:
 – Chemical
 – Transport
 – Mechanical

• To do work, cells manage energy resources by energy coupling, the use of an exergonic process to drive an endergonic one

• Most energy coupling in cells is mediated by ATP
The Structure and Hydrolysis of ATP

- **ATP (adenosine triphosphate)** is the cell’s energy shuttle

- ATP is composed of ribose (a sugar), adenine (a nitrogenous base), and three phosphate groups
Phosphate groups

Ribose

Adenine

NH₂

H C
N C
 N
 C
 C
HC

H H H
O O H
OH OH
• The bonds between the phosphate groups of ATP’s tail can be broken by hydrolysis

• Energy is released from ATP when the terminal phosphate bond is broken

• This release of energy comes from the chemical change to a state of lower free energy, not from the phosphate bonds themselves
Inorganic phosphate + Adenosine triphosphate (ATP) + Energy

Adenosine triphosphate (ATP)

Inorganic phosphate + Adenosine diphosphate (ADP)
How ATP Performs Work

• The three types of cellular work (mechanical, transport, and chemical) are powered by the hydrolysis of ATP.

• In the cell, the energy from the exergonic reaction of ATP hydrolysis can be used to drive an endergonic reaction.

• Overall, the coupled reactions are exergonic.
(a) Endergonic reaction

1. ATP phosphorylates glutamic acid, making the amino acid less stable.

2. Ammonia displaces the phosphate group, forming glutamine.

(b) Coupled with ATP hydrolysis, an exergonic reaction

Glu + NH₃ → Glu—NH₂ \(\Delta G = +3.4 \text{ kcal/mol} \)

ATP → ADP + Pᵢ \(\Delta G = -7.3 \text{ kcal/mol} \)

Net \(\Delta G = -3.9 \text{ kcal/mol} \)

(c) Overall free-energy change
ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant.

The recipient molecule is now phosphorylated.
(a) Transport work: ATP phosphorylates transport proteins.

(b) Mechanical work: ATP binds noncovalently to motor proteins, then is hydrolyzed.
The Regeneration of ATP

• ATP is a renewable resource that is regenerated by addition of a phosphate group to adenosine diphosphate (ADP)

• The energy to phosphorylate ADP comes from catabolic reactions in the cell

• The chemical potential energy temporarily stored in ATP drives most cellular work
Energy from catabolism (exergonic, energy-releasing processes)

ATP + H₂O → ADP + Pᵢ

Energy for cellular work (endergonic, energy-consuming processes)
Concept 8.4: Enzymes speed up metabolic reactions by lowering energy barriers

- A **catalyst** is a chemical agent that speeds up a reaction without being consumed by the reaction.

- An **enzyme** is a catalytic protein.

- Hydrolysis of sucrose by the enzyme sucrase is an example of an enzyme-catalyzed reaction.
Sucrose (C$_{12}$H$_{22}$O$_{11}$)

Sucrase

Glucose (C$_6$H$_{12}$O$_6$) + Fructose (C$_6$H$_{12}$O$_6$)
The Activation Energy Barrier

- Every chemical reaction between molecules involves bond breaking and bond forming.
- The initial energy needed to start a chemical reaction is called the free energy of activation, or activation energy \((E_A) \).
- Activation energy is often supplied in the form of heat from the surroundings.
Fig. 8-14

Progress of the reaction

Products

Reactants

Transition state

Free energy

$\Delta G < 0$

E_A

ΔG

Progress of the reaction

Copyright © 2006 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
How Enzymes Lower the E_A Barrier

- Enzymes catalyze reactions by lowering the E_A barrier
- Enzymes do not affect the change in free energy (ΔG); instead, they hasten reactions that would occur eventually
Fig. 8-15

Progress of the reaction

Products

Reactants

Course of reaction without enzyme

Course of reaction with enzyme

E_A without enzyme

E_A with enzyme is lower

ΔG is unaffected by enzyme

Free energy

Progress of the reaction
Substrate Specificity of Enzymes

• The reactant that an enzyme acts on is called the enzyme’s substrate.

• The enzyme binds to its substrate, forming an enzyme-substrate complex.

• The active site is the region on the enzyme where the substrate binds.

• Induced fit of a substrate brings chemical groups of the active site into positions that enhance their ability to catalyze the reaction.
Fig. 8-16

Substrate

Active site

Enzyme

Enzyme-substrate complex

(a)

(b)
Catalysis in the Enzyme’s Active Site

- In an enzymatic reaction, the substrate binds to the active site of the enzyme
- The active site can lower an E_A barrier by
 - Orienting substrates correctly
 - Straining substrate bonds
 - Providing a favorable microenvironment
 - Covalently bonding to the substrate
Substrates enter active site; enzyme changes shape such that its active site enfolds the substrates (induced fit).

Substrates held in active site by weak interactions, such as hydrogen bonds and ionic bonds.

Active site can lower E_A and speed up a reaction.

Active site is available for two new substrate molecules.

Products are released.

Substrates are converted to products.
Effects of Local Conditions on Enzyme Activity

- An enzyme’s activity can be affected by
 - General environmental factors, such as temperature and pH
 - Chemicals that specifically influence the enzyme
Effects of Temperature and pH

- Each enzyme has an optimal temperature in which it can function
- Each enzyme has an optimal pH in which it can function
Fig. 8-18

(a) Optimal temperature for two enzymes

(b) Optimal pH for two enzymes
Cofactors

- **Cofactors** are nonprotein enzyme helpers
- Cofactors may be inorganic (such as a metal in ionic form) or organic
- An organic cofactor is called a **coenzyme**
- Coenzymes include vitamins
Enzyme Inhibitors

• **Competitive inhibitors** bind to the active site of an enzyme, competing with the substrate.

• **Noncompetitive inhibitors** bind to another part of an enzyme, causing the enzyme to change shape and making the active site less effective.

• Examples of inhibitors include toxins, poisons, pesticides, and antibiotics.
Fig. 8-19

(a) Normal binding

(b) Competitive inhibition

(c) Noncompetitive inhibition

Substrate
Active site
Enzyme
Competitive inhibitor
Noncompetitive inhibitor
Concept 8.5: Regulation of enzyme activity helps control metabolism

- Chemical chaos would result if a cell’s metabolic pathways were not tightly regulated.
- A cell does this by switching on or off the genes that encode specific enzymes or by regulating the activity of enzymes.
Allosteric Regulation of Enzymes

- **Allosteric regulation** may either inhibit or stimulate an enzyme’s activity.

- Allosteric regulation occurs when a regulatory molecule binds to a protein at one site and affects the protein’s function at another site.
Allosteric Activation and Inhibition

- Most allosterically regulated enzymes are made from polypeptide subunits
- Each enzyme has active and inactive forms
- The binding of an activator stabilizes the active form of the enzyme
- The binding of an inhibitor stabilizes the inactive form of the enzyme
Allosteric enzyme with four subunits

Active site (one of four)

Regulatory site (one of four)

Active form

Stabilized active form

Oscillation

Non-functional active site

Inactive form

Stabilized inactive form

(a) Allosteric activators and inhibitors

Substrate

Inactive form

Stabilized active form

(b) Cooperativity: another type of allosteric activation
(a) Allosteric activators and inhibitors
• **Cooperativity** is a form of allosteric regulation that can amplify enzyme activity

• In cooperativity, binding by a substrate to one active site stabilizes favorable conformational changes at all other subunits
(b) Cooperativity: another type of allosteric activation
Identification of Allosteric Regulators

- Allosteric regulators are attractive drug candidates for enzyme regulation
- Inhibition of proteolytic enzymes called caspases may help management of inappropriate inflammatory responses
RESULTS

EXPERIMENT

Caspase 1

Active site

Substrate

Known active form

Active form can bind substrate

Known inactive form

Allosteric binding site

Allosteric inhibitor

Hypothesis: allosteric inhibitor locks enzyme in inactive form

RESULTS

Caspase 1

Active form

Allosterically inhibited form

Inactive form
Hypothesis: allosteric inhibitor locks enzyme in inactive form

Known active form can bind substrate

Known inactive form

Allosteric binding site

Allosteric inhibitor

Hypothesis: allosteric inhibitor locks enzyme in inactive form
RESULTS

Caspase 1

Active form

Allosterically inhibited form

Inactive form

Inhibitor
Feedback Inhibition

- In **feedback inhibition**, the end product of a metabolic pathway shuts down the pathway.
- Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed.
Fig. 8-22

- **Intermediate C Feedback inhibition**
 - Isoleucine used up by cell
 - Active site of enzyme 1 no longer binds threonine; pathway is switched off.

- **Isoleucine binds to allosteric site**
 - Feedback inhibition

- **End product (isoleucine)**
 - Enzyme 1 (threonine deaminase)
 - Threonine in active site
 - Initial substrate (threonine)
 - Active site available

- **Enzyme 2**
 - Intermediate B

- **Enzyme 3**
 - Intermediate C

- **Enzyme 4**
 - Intermediate D

- **Enzyme 5**
 - End product (isoleucine)
 - Initial substrate (threonine)
 - Threonine in active site
 - Active site available

- **Enzyme 1 (threonine deaminase)**
 - Initial substrate (threonine)
 - Threonine in active site
 - Active site available

- **Initial substrate (threonine)**
 - Active site available

- **Active site of enzyme 1 no longer binds threonine; pathway is switched off.**
 - Isoleucine binds to allosteric site
Specific Localization of Enzymes Within the Cell

• Structures within the cell help bring order to metabolic pathways

• Some enzymes act as structural components of membranes

• In eukaryotic cells, some enzymes reside in specific organelles; for example, enzymes for cellular respiration are located in mitochondria
Mitochondria
Fig. 8-UN2

Course of reaction without enzyme

Course of reaction with enzyme

E_A without enzyme

E_A with enzyme is lower

Reactants

Products

ΔG is unaffected by enzyme

Free energy

Progress of the reaction
Optimal pH for lysosomal enzyme
You should now be able to:

1. Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and endergonic reactions

2. In your own words, explain the second law of thermodynamics and explain why it is not violated by living organisms

3. Explain in general terms how cells obtain the energy to do cellular work
4. Explain how ATP performs cellular work

5. Explain why an investment of activation energy is necessary to initiate a spontaneous reaction

6. Describe the mechanisms by which enzymes lower activation energy

7. Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme