Chapter 19: Disorders of the Immune System

1. Hypersensitivity
2. Autoimmunity
3. Transplant Rejection
1. Hypersensitivity
What is Hypersensitivity?

Hypersensitivity is an immunological state in which the immune system “over-reacts” to foreign antigen such that the immune response itself is more harmful than the antigen.

All types of hypersensitivity involve:

- the adaptive immune response
 - i.e., highly specific reactions via T or B cells
- prior exposure to the antigen
 - the initial exposure **sensitizes** the individual but does NOT cause a hypersensitive reaction
 - hypersensitivity is only seen on secondary exposure
Types of Hypersensitivity

Hypersensitivity following secondary exposure to antigen comes in 4 basic forms:

*Type I: **allergic reactions** ("immediate" hypersensitivity)
 - IgE mediated and very rapid (2-30 minutes)

*Type II: **cytotoxic reactions**
 - cell damage due to complement activation via IgM or IgG

*Type III: **immune complex reactions**
 - cell damage due to excess antibody/antigen complexes

Type IV: **delayed cell-mediated reactions**
 - cell damage involving T cells & macrophages

* Types I-III are all antibody-mediated, Type IV is not!
Type I: **Allergic Reactions**

Allergic (anaphylactic) reactions involve the activation of mast cells or basophils through the binding of antigen to IgE on the cell surface:

- Mast cells & basophils have IgE receptors that bind the constant region of any IgE antibody.

- "Cross-linking" of IgE molecules on the cell surface by binding to antigen triggers the release of "mediators".
 - Mediators = histamine, prostaglandins & leukotrienes
more on Allergic Reactions

The release of these mediators causes the redness, swelling, itching, mucus, etc., that characterize allergic reactions:

Most allergic reactions are local:

- itching, redness, hives in the skin, mucus, sneezing
- usually due to inhaled or ingested antigens

Systemic allergic reactions can be lethal:

- severe loss of blood pressure, breathing difficulty (anaphylactic shock)
- usu. due to animal venoms or certain foods
- epinephrine can “shut down” the allergic reaction
Some common Allergens

Grains of pollen

Foods
 • e.g., corn, eggs, nuts, peanuts, onions

Dust mites
 • the allergen is actually dust mite feces (yuck!)
Managing Allergic Reactions

Avoidance

• avoiding contact with allergen is by far the safest and most effective way of managing allergies

Medications

• antihistamines
 • drugs that block histamine receptors on target cells
 • histamine is still released but has little effect

• epinephrine (aka – adrenalin)
 • necessary to halt systemic anaphylaxis

Desensitization

• antigen injection protocol to induce tolerance
Type II: Cytotoxic Reactions

Type II cytotoxic reactions involve destruction of cells bound by IgG or IgM antibodies via the activation of complement:

- symptoms take several hours to appear
- most commonly observed with blood transfusions
 - reaction to ABO blood antigens
 - reaction to Rh antigen
- can occur via the Rh antigen in newborns
 - requires Rh⁻ mother and Rh⁺ child
 - Rh⁻ mother produces anti-Rh⁺ IgG following birth
 - subsequent Rh⁺ children are vulnerable
The ABO Blood Antigens

TABLE 19.2
The ABO Blood Group System

<table>
<thead>
<tr>
<th>Blood Group</th>
<th>Erythrocyte or Red Blood Cell Antigens</th>
<th>Illustration</th>
<th>Plasma Antibodies</th>
<th>Blood That Can Be Received</th>
<th>White</th>
<th>Black</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A and B</td>
<td>![Illustration]</td>
<td>Neither anti-A nor anti-B antibodies</td>
<td>A, B, AB, O (Universal recipient)</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>![Illustration]</td>
<td>Anti-A</td>
<td>B, O</td>
<td>9</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>![Illustration]</td>
<td>Anti-B</td>
<td>A, O</td>
<td>41</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>O</td>
<td>Neither A nor B</td>
<td>![Illustration]</td>
<td>Anti-A and Anti-B</td>
<td>O (Universal donor)</td>
<td>47</td>
<td>49</td>
<td>40</td>
</tr>
</tbody>
</table>

- A or B type polysaccharide antigens on surface of RBCs
- individuals lacking enzymes producing A or B are type O
ABO mediated Cytotoxicity

Blood type “O” individuals (tolerate type O blood only)

- do not produce type A or type B antigens
- produce antibodies to type A and B antigens and thus will lyse type A, B or AB RBCs via complement

Blood type “A” individuals (tolerate blood types A & O)

- produce only type A antigens
- i.e., tolerant to type A antigen, antibodies to B antigen

Blood type “B” individuals (tolerate blood types B & O)

- tolerant to type B antigen, antibodies to A antigen

Blood type “AB” individuals (tolerate all blood types)

- tolerant to both A & B antigens
The Rh Blood Cell Antigen

• Rh antigen is also a polysaccharide on red blood cells
• Rh− mother produces antibodies during birth of 1st Rh+ child, which can harm later Rh+ children
Drug-induced Type II Hypersensitivity

- involves drugs that bind to the surface of cells or platelets
- drug functions as a hapten which in conjunction with cell can stimulate humoral immunity
- antibody binding triggers complement activation, lysis of cells binding the drug
Type III: Immune Complex Reactions

Caused by high levels of antigen-antibody complexes (due to foreign or self Ag) that are not cleared efficiently by phagocytes and tend to deposit in certain tissues:

- blood vessel endothelium in kidneys, lungs
- joints

This can result in local cell damage via:

- complement activation
- attraction of phagocytes, other cells involved in inflammation (e.g., neutrophils)
Type III: **Immune Complex Reactions**

1. Immune complexes are deposited in wall of blood vessel.
2. Presence of immune complexes activates complement and attracts inflammatory cells such as neutrophils.
3. Enzymes released from neutrophils cause damage to endothelial cells of basement membrane.

- antigen:antibody complexes trapped in endothelium
- inflammatory response damages blood vessel walls
Type IV: **Delayed Hypersensitivity**

Delayed cell-mediated hypersensitivity takes 1 or 2 days to appear and involves the action of T cells & macrophages, NOT antibodies:

- proteins from foreign antigen induce T_{H1} response
- secondary exposure results in the activation of memory T_{H1} cells which attract monocytes to area
- monocytes activated to become macrophages
- macrophages release toxic factors to destroy ALL cells in the immediate area

general response to intracellular bacteria but can also occur with other antigens (latex, poison ivy)
Infection Allergy
A type of delayed cell-mediated hypersensitivity resulting from infection with an intracellular bacterial pathogen:

- a T_c cell-mediated reaction, NOT IgE based allergy

- basis of the tuberculin test

- previous exposure to *Mycobacterium tuberculosis* gives a positive test result
Contact Dermatitis

- certain substances act as haptens in combination with skin proteins
- activates a potent T cell mediated response upon secondary exposure (e.g., poison ivy)
Summary of Hypersensitivity Reactions

<table>
<thead>
<tr>
<th>Type of Reaction</th>
<th>Time Before Clinical Signs</th>
<th>Characteristics</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (anaphylactic)</td>
<td><30 min</td>
<td>IgE binds to mast cells or basophils; causes degranulation of mast cell or basophil and release of reactive substances such as histamine</td>
<td>Anaphylactic shock from drug injections and insect venom; common allergic conditions, such as hay fever, asthma</td>
</tr>
<tr>
<td>Type II (cytotoxic)</td>
<td>5–12 hours</td>
<td>Antigen causes formation of IgM and IgG antibodies that bind to target cell; when combined with action of complement, destroys target cell</td>
<td>Transfusion reactions, Rh incompatibility</td>
</tr>
<tr>
<td>Type III (immune complex)</td>
<td>3–8 hours</td>
<td>Antibodies and antigens form complexes that cause damaging inflammation</td>
<td>Arthus reactions, serum sickness</td>
</tr>
<tr>
<td>Type IV (delayed cell-mediated, or delayed hypersensitivity)</td>
<td>24–48 hours</td>
<td>Antigens activate T<sub>C</sub> that kill target cells.</td>
<td>Rejection of transplanted tissues; contact dermatitis, such as poison ivy; certain chronic diseases, such as tuberculosis</td>
</tr>
</tbody>
</table>
2. Autoimmunity
What is Autoimmunity?

Autoimmunity refers to the generation of an immune response to self antigens:

- normally the body prevents such reactions
 - T cells with receptors that bind self antigens are eliminated (or rendered anergic*) in the thymus
 - B cells with antibodies that bind self antigens are eliminated or rendered anergic in the bone marrow or even in the periphery (i.e., outside the bone marrow)
- however in rare cases T and/or B cells that recognize self antigens survive & are activated

*anergic = non-reactive or non-responsive
How is Autoimmunity Generated?

It’s not entirely clear, however some factors thought to trigger autoimmunity are:

• genetic factors
 • e.g., certain HLA (human MHC class I) alleles are associated with particular autoimmune diseases

• foreign antigens that mimic self antigens
 • peptide antigens from certain viral and bacterial pathogens are very similar to specific self peptides
 • once an immune response is generated to pathogen, these T and B cells continue to respond to tissues expressing the similar self peptide
Common Autoimmune Diseases

Lupus

• antibodies to self including DNA and histone proteins

Rheumatoid Arthritis

• immune response to self antigens in synovial membranes of joints

Type I Diabetes

• immune response to self antigens in pancreatic \(\beta \) cells (insulin-producing cells)

Multiple Sclerosis

• immune response to myelin basic protein in Schwann cells (form myelin sheath of neurons)
3. Transplant Rejection
Transplants & MHC molecules

Transplanted organs and tissues are rejected as foreign by the immune system due to the presence of non-self MHC class I molecules:

• human MHC class I molecules are referred to as the HLA (human leukocyte antigen) complex

• there are 3 HLA genes resulting in up to 6 different HLA proteins per individual

• there are many different HLA alleles in the human population, so each person’s HLA make up is unique

• close relatives are much more likely to have similar HLA antigens to recipient than non-relatives
How are Transplant Cells Killed?

The recipient has no tolerance to donor MHC:

1) recipient T cells that bind strongly to donor MHC molecules with peptide will be activated
 • donor cells with foreign MHC class I
 • donor APCs with foreign MHC class II

2) MHC presentation of foreign donor MHC peptides

This leads to:

• activated CTLs that attack & kill donor cells
• activated B cells producing donor MHC-specific Ab
 • antibody mediated cytotoxicity toward donor cells
Identifying Donor by Tissue Typing

- Antibodies specific for particular MHC class I molecules are added to donor test cells *in vitro*.
- Complement lysis occurs if test cells express that MHC class I molecule.
- Identifying class I types facilitates finding the best matched donor.
How can a Transplant be Protected?

By **immunosuppression:**

- drugs such as cyclosporine are given to the recipient to suppress the adaptive IR
 - humoral immunity is not suppressed so antibodies to donor MHC molecules are still produced
 - some newer drugs are capable of repressing both the cellular and humoral immune responses
- normal, healthy immune surveillance is impaired, so there is greater risk of infection
Key Terms for Chapter 19

- sensitization, types I, II, III & IV hypersensitivity
- anaphylaxis, anaphylactic shock
- histamine, prostaglandins, leukotrienes
- ABO & Rh blood antigens
- autoimmunity, anergic
- infection allergy, contact dermatitis
- HLA, tissue typing

Relevant Chapter Questions

rvw: 1-9 MC: 1-3, 6-10