Nervous Tissue

- Controls and integrates all body activities within limits that maintain life
- Three basic functions
 - sensing changes with sensory receptors
 - fullness of stomach or sun on your face
 - interpreting and remembering those changes
 - reacting to those changes with effectors
 - muscular contractions
 - glandular secretions
Major Structures of the Nervous System

- Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors
Organization of the Nervous System

- CNS is brain and spinal cord
- PNS is everything else
Nervous System Divisions

• Central nervous system (CNS)
 – consists of the brain and spinal cord

• Peripheral nervous system (PNS)
 – consists of cranial and spinal nerves that contain both sensory and motor fibers
 – connects CNS to muscles, glands & all sensory receptors
Subdivisions of the PNS

• Somatic (voluntary) nervous system (SNS)
 – neurons from cutaneous and special sensory receptors to the CNS
 – motor neurons to skeletal muscle tissue

• Autonomic (involuntary) nervous systems
 – sensory neurons from visceral organs to CNS
 – motor neurons to smooth & cardiac muscle and glands
 • sympathetic division (speeds up heart rate)
 • parasympathetic division (slow down heart rate)

• Enteric nervous system (ENS)
 – involuntary sensory & motor neurons control GI tract
 – neurons function independently of ANS & CNS
Neurons

- Functional unit of nervous system
- Have capacity to produce action potentials
 - electrical excitability
- Cell body
- Cell processes = dendrites & axons
Axons and Dendrites

- Axons conduct impulses away from cell body
- Dendrites conducts impulses towards the cell body
Neuroglial Cells

• Half of the volume of the CNS
• Smaller cells than neurons
• 50X more numerous
• Cells can divide
 – rapid mitosis in tumor formation (gliomas)
• 4 cell types in CNS
 – astrocytes, oligodendrocytes, microglia & ependymal
• 2 cell types in PNS
 – schwann and satellite cells
Oligodendrocytes

- Most common glial cell type
- Each forms myelin sheath around more than one axons in CNS
- Analogous to Schwann cells of PNS
Schwann Cell

- Cells encircling PNS axons
- Each cell produces part of the myelin sheath surrounding an axon in the PNS
Axon Coverings in PNS

- All axons surrounded by a lipid & protein covering (myelin sheath) produced by Schwann cells
- Neurilemma is cytoplasm & nucleus of Schwann cell
 - gaps called nodes of Ranvier
- Myelinated fibers appear white
 - jelly-roll like wrappings made of lipoprotein = myelin
 - acts as electrical insulator
 - speeds conduction of nerve impulses
- Unmyelinated fibers
 - slow, small diameter fibers
 - only surrounded by neurilemma but no myelin sheath wrapping
Myelination in PNS

- Schwann cells myelinate (wrap around) axons in the PNS during fetal development
- Schwann cell can only myelinate 1 axon
- Schwann cell cytoplasm & nucleus forms outermost layer of neurolemma with inner portion being the myelin sheath
- Tube guides growing axons that are repairing themselves
Myelination in the CNS

- Oligodendrocytes myelinate axons in the CNS
- Broad, flat cell processes wrap about CNS axons, but the cell bodies do not surround the axons
- No neurilemma is formed
- Little regrowth after injury is possible due to the lack of a distinct tube or neurilemma
Gray and White Matter

- White matter = myelinated processes (white in color)
- Gray matter = nerve cell bodies, dendrites, axon terminals, bundles of unmyelinated axons and neuroglia (gray color)
 - In the spinal cord = gray matter forms an H-shaped inner core surrounded by white matter
 - In the brain = a thin outer shell of gray matter covers the surface & is found in clusters called nuclei inside the CNS
Electrical Signals in Neurons

- Neurons are electrically excitable due to the voltage difference across their membrane.
- Communicate with 2 types of electric signals:
 - action potentials that can travel long distances
 - graded potentials that are local membrane changes only
- In living cells, a flow of ions occurs through ion channels in the cell membrane.
Two Types of Ion Channels

• Leakage (nongated) channels are always open
 – nerve cells have more K+ than Na+ leakage channels
 – as a result, membrane permeability to K+ is higher
 – explains restoring membrane potential of -70mV in nerve tissue

• Gated channels open and close in response to a stimulus results in neuron excitability
 – voltage-gated open in response to change in voltage
 – ligand-gated open & close in response to particular chemical stimuli (hormone, neurotransmitter, ion)
 – mechanically-gated open with mechanical stimulation
Gated Ion Channels

(a) Voltage-gated ion channel
- Voltage $= -70$ mV
- K$^+$ channel closed
- Extracellular fluid
- Change in membrane potential
- Voltage $= -50$ mV

(b) Ligand-gated ion channel
- Acetylcholine
- Cation channel open
- Chemical stimulus
Resting Membrane Potential

• Negative ions along inside of cell membrane & positive ions along outside
 – potential energy difference at rest is -70 mV
 – cell is “polarized”

• Resting potential exists because
 – concentration of ions different inside & outside
 • extracellular fluid rich in Na+
 • cytosol full of K+
 – membrane permeability differs for Na+ and K+
 • 50-100 greater permeability for K+
 • inward flow of Na+ can’t keep up with outward flow of K+
 • Na+/K+ pump removes Na+ as fast as it leaks in
Graded Potentials

- Small deviations from resting potential of -70mV
 - hyperpolarization = membrane has become more negative
 - depolarization = membrane has become more positive
How do Graded Potentials Arise?

• Source of stimuli
 – mechanical stimulation of membranes with mechanical gated ion channels (pressure)
 – chemical stimulation of membranes with ligand gated ion channels (neurotransmitter)

• Graded potential
 – ions flow through ion channels and change membrane potential locally
 – amount of change varies with strength of stimuli (graded)

• Flow of current (ions) is local change only
Action Potential

- Series of rapidly occurring events that change and then restore the membrane potential of a cell to its resting state
- Ion channels open, Na+ rushes in (depolarization), K+ rushes out (repolarization)
- All-or-none principal = with stimulation, either happens one specific way or not at all (lasts 1/1000 of a second)
- Travels (spreads) over surface of cell without dying out
Depolarizing Phase of Action Potential

- Chemical or mechanical stimulus caused a graded potential to reach at least (-55mV or threshold)
- Voltage-gated Na+ channels open & Na+ rushes into cell
- Positive feedback process
Repolarizing Phase of Action Potential

- When threshold potential of -55mV is reached, voltage-gated K+ channels open
- K+ channel opening is much slower than Na+ channel opening which caused depolarization
- When K+ channels finally do open, the Na+ channels have already closed (Na+ inflow stops)
- K+ outflow returns membrane potential to -70mV
- If enough K+ leaves the cell, it will reach a -90mV membrane potential and enter the after-hyperpolarizing phase
- K+ channels close and the membrane potential returns to the resting potential of -70mV
Refractory Period of Action Potential

- Period of time during which neuron can not generate another action potential
The Action Potential: Summarized

- Resting membrane potential is -70 mV
- Depolarization is the change from -70 mV to +30 mV
- Repolarization is the reversal from +30 mV back to -70 mV)
Propagation of Action Potential

• An action potential spreads (propagates) over the surface of the axon membrane
 – as Na+ flows into the cell during depolarization, the voltage of adjacent areas is effected and their voltage-gated Na+ channels open
 – self-propagating along the membrane

• The traveling action potential is called a nerve impulse
Local Anesthetics

• Prevent opening of voltage-gated Na+ channels
• Nerve impulses cannot pass the anesthetized region
• Novocaine and lidocaine
Continuous versus Saltatory Conduction

• Continuous conduction (unmyelinated fibers)
 – step-by-step depolarization of each portion of the length of the axolemma

• Saltatory conduction (myelinated fibers)
 – depolarization only at nodes of Ranvier where there is a high density of voltage-gated ion channels
 – current carried by ions flows through extracellular fluid from node to node
 – travels faster
Saltatory Conduction

- Nerve impulse conduction in which the impulse jumps from node to node
Encoding of Stimulus Intensity

- How do we differentiate a light touch from a firmer touch?
 - frequency of impulses
 - firm pressure generates impulses at a higher frequency
 - number of sensory neurons activated
 - firm pressure stimulates more neurons than does a light touch
Comparison of Graded & Action Potentials

• Origin
 – GPs arise on dendrites and cell bodies
 – APs arise only at trigger zone on axon hillock

• Types of Channels
 – AP is produced by voltage-gated ion channels
 – GP is produced by ligand or mechanically-gated channels

• Conduction
 – GPs are localized (not propagated)
 – APs conduct over the surface of the axon
Comparison of Graded & Action Potentials

• Amplitude
 – amplitude of the AP is constant (all-or-none)
 – graded potentials vary depending upon stimulus

• Duration
 – The duration of the GP is as long as the stimulus lasts (several msec to minutes)
 – The duration of AP is shorter (0.5 to 2 msec)

• Refractory period
 – The AP has a refractory period due to the nature of the voltage-gated channels, and the GP has none.
Signal Transmission at Synapses

• 2 Types of synapses
 – electrical
 • ionic current spreads to next cell through gap junctions
 • faster, two-way transmission & capable of synchronizing groups of neurons
 – chemical
 • one-way information transfer from a presynaptic neuron to a postsynaptic neuron
 – axodendritic -- from axon to dendrite
 – axosomatic -- from axon to cell body
 – axoaxonic -- from axon to axon
Chemical Synapses

- Action potential reaches end bulb and voltage-gated Ca\(^{2+}\) channels open
- Ca\(^{2+}\) flows inward triggering release of neurotransmitter
- Neurotransmitter crosses synaptic cleft & binding to ligand-gated receptors
 - the more neurotransmitter released the greater the change in potential of the postsynaptic cell
- Synaptic delay is 0.5 msec
- One-way information transfer
Excitatory & Inhibitory Potentials

• The effect of a neurotransmitter can be either excitatory or inhibitory
 – a depolarizing postsynaptic potential is called an EPSP
 • it results from the opening of ligand-gated Na+ channels
 • the postsynaptic cell is more likely to reach threshold
 – an inhibitory postsynaptic potential is called an IPSP
 • it results from the opening of ligand-gated Cl- or K+ channels
 • it causes the postsynaptic cell to become more negative or hyperpolarized
 • the postsynaptic cell is less likely to reach threshold
Removal of Neurotransmitter

- **Diffusion**
 - move down concentration gradient
- **Enzymatic degradation**
 - acetylcholinesterase
- **Uptake by neurons or glia cells**
 - neurotransmitter transporters
 - Prozac = serotonin reuptake inhibitor
Small-Molecule Neurotransmitters

• Acetylcholine (ACh)
 – released by many PNS neurons & some CNS
 – excitatory on NMJ but inhibitory at others
 – inactivated by acetylcholinesterase

• Amino Acids
 – glutamate released by nearly all excitatory neurons in the brain
 – GABA is inhibitory neurotransmitter for 1/3 of all brain synapses (Valium is a GABA agonist -- enhancing its inhibitory effect)
Small-Molecule Neurotransmitters (2)

• Biogenic Amines
 – modified amino acids (tyrosine)
 • norepinephrine -- regulates mood, dreaming, awakening from deep sleep
 • dopamine – emotional response, addictive behavior, pleasurable experiences, regulating skeletal muscle tone
 • serotonin -- control of mood, temperature regulation, & induction of sleep
 – removed from synapse & recycled or destroyed by enzymes
Small-Molecule Neurotransmitters (3)

- **ATP**
 - excitatory in both CNS & PNS
 - released with other neurotransmitters (ACh & NE)

- **Gases (nitric oxide or NO)**
 - formed from amino acid arginine by an enzyme
 - formed on demand and acts immediately
 - diffuses out of cell that produced it to affect neighboring cells
Neuropeptides

• 3-40 amino acids linked by peptide bonds
• Substance P -- enhances our perception of pain
• Pain relief
 – endorphins -- pain-relieving effect by blocking the release of substance P
Regeneration & Repair

• Plasticity maintained throughout life
 – sprouting of new dendrites
 – synthesis of new proteins
 – changes in synaptic contacts with other neurons

• Limited ability for regeneration (repair)
 – PNS can repair damaged dendrites or axons
 – CNS no repairs are possible
Neurogenesis in the CNS

• Formation of new neurons from stem cells was not thought to occur in humans
 – 1992 a growth factor was found that stimulates adult mice brain cells to multiply
 – 1998 new neurons found to form within adult human hippocampus (area important for learning)

• Factors preventing neurogenesis in CNS
 – inhibition by neuroglial cells, absence of growth stimulating factors, lack of neurolemmas, and rapid formation of scar tissue
Repair within the PNS

- Axons & dendrites may be repaired if
 - neuron cell body remains intact
 - schwann cells remain active and form a tube
 - scar tissue does not form too rapidly

- Chromatolysis
 - 24-48 hours after injury, Nissl bodies break up into fine granular masses
Repair within the PNS

• By 3-5 days,
 – wallerian degeneration occurs (breakdown of axon & myelin sheath distal to injury)
 – retrograde degeneration occurs back one node

• Within several months, regeneration occurs
 – neurolemma on each side of injury repairs tube (schwann cell mitosis)
 – axonal buds grow down the tube to reconnect (1.5 mm per day)
Multiple Sclerosis (MS)

• Autoimmune disorder causing destruction of myelin sheaths in CNS
 – sheaths becomes scars or plaques
 – 1/2 million people in the United States
 – appears between ages 20 and 40
 – females twice as often as males

• Symptoms include muscular weakness, abnormal sensations or double vision

• Remissions & relapses result in progressive, cumulative loss of function