The Cardiovascular System: The Heart

- Heart pumps over 1 million gallons per year
- Over 60,000 miles of blood vessels
Heart Location

- Heart is located in the mediastinum
 - area from the sternum to the vertebral column and between the lungs
Heart Orientation

- Heart has 2 surfaces: anterior and inferior, and 2 borders: right and left
Pericardium

• Fibrous pericardium
 – dense irregular CT
 – protects and anchors the heart, prevents overstretching

• Serous pericardium
 – thin delicate membrane
 – contains
 • parietal layer-outer layer
 • pericardial cavity with pericardial fluid
 • visceral layer (epicardium)
Layers of Heart Wall

- **Epicardium**
 - visceral layer of serous pericardium

- **Myocardium**
 - cardiac muscle layer is the bulk of the heart

- **Endocardium**
 - chamber lining & valves
Chambers and Sulci of the Heart

• Four chambers
 – 2 upper atria
 – 2 lower ventricles

• Sulci - grooves on surface of heart containing coronary blood vessels and fat
 – coronary sulcus
 • encircles heart and marks the boundary between the atria and the ventricles
 – anterior interventricular sulcus
 • marks the boundary between the ventricles anteriorly
 – posterior interventricular sulcus
 • marks the boundary between the ventricles posteriorly
Chambers and Sulci

Anterior View

- Brachiocephalic trunk
- Superior vena cava
- Right pulmonary artery
- Right pulmonary veins
- Right auricle of right atrium
- Right coronary artery
- Coronary sulcus
- Anterior cardiac vein
- Right ventricle
- Inferior vena cava
- Left common carotid artery
- Left subclavian artery
- Arch of aorta
- Ascending aorta
- Ligamentum arteriosum
- Left pulmonary artery
- Pulmonary trunk
- Left pulmonary veins
- Left auricle of left atrium
- Left coronary artery (anterior interventricular branch)
- Anterior interventricular sulcus
- Greater cardiac vein
- Left ventricle
- Descending aorta
Chambers and Sulci

Posterior View
Right Atrium

- Receives blood from 3 sources
 - superior vena cava, inferior vena cava and coronary sinus
- Interatrial septum partitions the atria
- Fossa ovalis is a remnant of the fetal foramen ovale
- Tricuspid valve
 - Blood flows through into right ventricle
 - has three cusps composed of dense CT covered by endocardium
Right Ventricle

- Forms most of anterior surface of heart
- Papillary muscles are cone shaped trabeculae carneae (raised bundles of cardiac muscle)
- Chordae tendineae: cords between valve cusps and papillary muscles
- Interventricular septum: partitions ventricles
- Pulmonary semilunar valve: blood flows into pulmonary trunk
Left Atrium

- Forms most of the base of the heart
- Receives blood from lungs - 4 pulmonary veins (2 right + 2 left)
- Bicuspid valve: blood passes through into left ventricle
 - has two cusps
 - to remember names of this valve, try the pneumonic LAMB
 • Left Atrioventricular, Mitral, or Bicuspid valve
• Forms the apex of heart
• Chordae tendineae anchor bicuspid valve to papillary muscles (also has trabeculae carneae like right ventricle)
• Aortic semilunar valve:
 – blood passes through valve into the ascending aorta
 – just above valve are the openings to the coronary arteries
Myocardial Thickness and Function

- Thickness of myocardium varies according to the function of the chamber
- Atria are thin walled, deliver blood to adjacent ventricles
- Ventricle walls are much thicker and stronger
 - right ventricle supplies blood to the lungs (little flow resistance)
 - left ventricle wall is the thickest to supply systemic circulation
Thickness of Cardiac Walls

Myocardium of left ventricle is much thicker than the right.
• A-V valves open and allow blood to flow from atria into ventricles when ventricular pressure is lower than atrial pressure
 – occurs when ventricles are relaxed, chordae tendineae are slack and papillary muscles are relaxed
Atrioventricular Valves Close

• A-V valves close preventing backflow of blood into atria
 – occurs when ventricles contract, pushing valve cusps closed, chordae tendinae are pulled taut and papillary muscles contract to pull cords and prevent cusps from everting
Semilunar Valves

- SL valves open with ventricular contraction
 - allow blood to flow into pulmonary trunk and aorta
- SL valves close with ventricular relaxation
 - prevents blood from returning to ventricles, blood fills valve cusps, tightly closing the SL valves
Valve Function Review

Atria contract, blood fills ventricles through A-V valves

Ventricles contract, blood pumped into aorta and pulmonary trunk through SL valves
One Cardiac Cycle

• At 75 beats/min, one cycle requires 0.8 sec.
 – systole (contraction) and diastole (relaxation) of both atria, plus the systole and diastole of both ventricles
Auscultation

- Stethoscope

- Sounds of heartbeat are from turbulence in blood flow caused by valve closure
 - first heart sound (lubb) is created with the closing of the atrioventricular valves
 - second heart sound (dupp) is created with the closing of semilunar valves
Heart Sounds

Where to listen on chest wall for heart sounds.
Blood Circulation

• Two closed circuits, the systemic and pulmonic
• Systemic circulation
 – left side of heart pumps blood through body
 – left ventricle pumps oxygenated blood into aorta
 – aorta branches into many arteries that travel to organs
 – arteries branch into many arterioles in tissue
 – arterioles branch into thin-walled capillaries for exchange of gases and nutrients
 – deoxygenated blood begins its return in venules
 – venules merge into veins and return to right atrium
Blood Circulation (cont.)

• Pulmonary circulation
 – right side of heart pumps deoxygenated blood to lungs
 – right ventricle pumps blood to pulmonary trunk
 – pulmonary trunk branches into pulmonary arteries
 – pulmonary arteries carry blood to lungs for exchange of gases
 – oxygenated blood returns to heart in pulmonary veins
Blood Circulation

- Blood flow
 - blue = deoxygenated
 - red = oxygenated
Coronary Circulation

• Coronary circulation is blood supply to the heart
• Heart as a very active muscle needs lots of O$_2$
• When the heart relaxes high pressure of blood in aorta pushes blood into coronary vessels
• Many anastomoses
 – connections between arteries supplying blood to the same region, provide alternate routes if one artery becomes occluded
Coronary Arteries

- Branches off aorta above aortic semilunar valve

- Left coronary artery
 - circumflex branch
 - in coronary sulcus, supplies left atrium and left ventricle
 - anterior interventricular art.
 - supplies both ventricles

- Right coronary artery
 - marginal branch
 - in coronary sulcus, supplies right ventricle
 - posterior interventricular art.
 - supplies both ventricles
Coronary Veins

- Collects wastes from cardiac muscle
- Drains into a large sinus on posterior surface of heart called the coronary sinus
- Coronary sinus empties into right atrium
Cardiac Muscle Histology

- Branching, intercalated discs with gap junctions, involuntary, striated, single central nucleus per cell
Conduction System of Heart

Coordinates contraction of heart muscle.
Conduction System of Heart

• Autorhythmic Cells
 – Cells fire spontaneously, act as pacemaker and form conduction system for the heart

• SA node
 – cluster of cells in wall of Rt. Atria
 – begins heart activity that spreads to both atria
 – excitation spreads to AV node

• AV node
 – in atrial septum, transmits signal to bundle of His

• AV bundle of His
 – the connection between atria and ventricles
 – divides into bundle branches & purkinje fibers, large diameter fibers that conduct signals quickly
Rhythm of Conduction System

- SA node fires spontaneously 90-100 times per minute
- AV node fires at 40-50 times per minute
- If both nodes are suppressed fibers in ventricles by themselves fire only 20-40 times per minute
- Artificial pacemaker needed if pace is too slow
- Extra beats forming at other sites are called ectopic pacemakers
 - caffeine & nicotine increase activity
Congestive Heart Failure

• Causes of CHF
 – coronary artery disease, hypertension, MI, valve disorders, congenital defects

• Left side heart failure
 – less effective pump so more blood remains in ventricle
 – heart is overstretched & even more blood remains
 – blood backs up into lungs as pulmonary edema
 – suffocation & lack of oxygen to the tissues

• Right side failure
 – fluid builds up in tissues as peripheral edema
Regulation of Heart Rate

- Nervous control from the cardiovascular center in the medulla
 - Sympathetic impulses increase heart rate and force of contraction
 - Parasympathetic impulses decrease heart rate.
 - Baroreceptors (pressure receptors) detect change in BP and send info to the cardiovascular center
 - Located in the arch of the aorta and carotid arteries

- Heart rate is also affected by hormones
 - Epinephrine, norepinephrine, thyroid hormones
 - Ions (Na\(^+\), K\(^+\), Ca\(^{2+}\))
 - Age, gender, physical fitness, and temperature
Regulation of Heart Rate

INPUT TO CARDIOVASCULAR CENTER (nerve impulses)
- From higher brain centers: cerebral cortex, limbic system, and hypothalamus
- From sensory receptors:
 - Proprioceptors—monitor movements
 - Chemoreceptors—monitor blood chemistry
 - Baroreceptors—monitor blood pressure

OUTPUT TO HEART (increased frequency of nerve impulses)
- Increased rate of spontaneous depolarization in SA node (and AV node) increases heart rate
- Increased contractility of atria and ventricles increases stroke volume
- Decreased rate of spontaneous depolarization in SA node (and AV node) decreases heart rate

Cardiovascular (CV) center
Cardiac accelerator nerves (sympathetic)