The Autonomic Nervous System

• Regulate activity of smooth muscle, cardiac muscle & certain glands

• Structures involved
 – general visceral sensory neurons
 – integration center within the brain
 – general visceral motor neurons
Autonomic versus Somatic NS

• Somatic nervous system
 – consciously perceived sensations
 – excitation of skeletal muscle
 – one motor neuron connects CNS to organ

• Autonomic nervous system
 – unconsciously perceived visceral sensations
 – involuntary inhibition or excitation of smooth muscle, cardiac muscle or glandular secretion
 – two motor neurons needed to connect CNS to organ
 • preganglionic and postganglionic neurons
Autonomic versus Somatic NS

- Notice that the ANS pathway is a 2 neuron pathway while the Somatic NS only contains one neuron.
Basic Anatomy of ANS

- **Preganglionic motor neuron**
 - cell body in brain or spinal cord
 - axon is myelinated fiber that extends to autonomic ganglion

- **Postganglionic motor neuron**
 - cell body lies outside the CNS in an autonomic ganglion
 - axon is unmyelinated fiber that terminates in a visceral effector
Divisions motor neurons in the ANS

- 2 major divisions
 - parasympathetic
 - sympathetic

- Dual innervation
 - one speeds up organ
 - one slows down organ
 - Sympathetic NS increases heart rate
 - Parasympathetic NS decreases heart rate
Sources of Dual Innervation

Sympathetic (thoracolumbar) division
- preganglionic cell bodies in thoracic and first 2 lumbar segments of spinal cord

Parasympathetic (craniosacral) division
- preganglionic cell bodies in nuclei of 4 cranial nerves and the sacral spinal cord
Locations of Autonomic Ganglia

- Ganglia contain soma of postganglionic neurons

- **Sympathetic Ganglia**
 - trunk (chain) ganglia near vertebral bodies
 - prevertebral ganglia near large blood vessel in gut
 - *Preganglionic sympathetic neurons are shorter than parasympathetic*

- **Parasympathetic Ganglia**
 - terminal ganglia in wall of organ
Circuitry of Sympathetic NS

• Divergence = each preganglionic cell synapses on many postganglionic cells
• Mass activation due to divergence
 – multiple target organs
 – fight or flight response explained
• Adrenal gland
 – modified cluster of postganglionic cell bodies that release epinephrine & norepinephrine into blood
Physiological Effects of the ANS

• Most body organs receive dual innervation
 – innervation by both sympathetic & parasympathetic

• Hypothalamus regulates balance (tone) between sympathetic and parasympathetic activity levels

• Some organs have only sympathetic innervation
 – sweat glands, adrenal medulla, arrector pili muscle & many blood vessels
Sympathetic Responses

- Dominance by the sympathetic system is caused by physical or emotional stress -- “E situations”
 - emergency, embarrassment, excitement, exercise
- Alarm reaction = flight or fight response
 - dilation of pupils
 - increase of heart rate, force of contraction & BP
 - decrease in blood flow to nonessential organs
 - increase in blood flow to skeletal & cardiac muscle
 - airways dilate & respiratory rate increases
 - blood glucose level increase
- Long lasting due to lingering of NE in synaptic gap and release of norepinephrine by the adrenal gland
Parasympathetic Responses

• Enhance “rest-and-digest” activities
• Mechanisms that help conserve and restore body energy during times of rest
• Normally dominate over sympathetic impulses
• SLUDD type responses = salivation, lacrimation, urination, digestion & defecation and 3 “decreases”---decreased HR, diameter of airways and diameter of pupil
• Paradoxical fear when there is no escape route or no way to win
 – causes massive activation of parasympathetic division
 – loss of control over urination and defecation
Autonomic or Visceral Reflexes

- Autonomic reflexes occur over autonomic reflex arcs. Components of that reflex arc:
 - sensory receptor
 - sensory neuron
 - integrating center
 - pre & postganglionic motor neurons
 - visceral effectors

- Unconscious sensations and responses
 - changes in blood pressure, digestive functions etc
 - filling & emptying of bladder or defecation
Control of Autonomic NS

• Not aware of autonomic responses because control center is in lower regions of the brain

• Hypothalamus is major control center